|  Help  |  About  |  Contact Us

Publication : Hv1 proton channel facilitates production of ROS and pro-inflammatory cytokines in microglia and enhances oligodendrocyte progenitor cells damage from oxygen-glucose deprivation in vitro.

First Author  Yu Y Year  2018
Journal  Biochem Biophys Res Commun Volume  498
Issue  1 Pages  1-8
PubMed ID  28676401 Mgi Jnum  J:271486
Mgi Id  MGI:6280875 Doi  10.1016/j.bbrc.2017.06.197
Citation  Yu Y, et al. (2018) Hv1 proton channel facilitates production of ROS and pro-inflammatory cytokines in microglia and enhances oligodendrocyte progenitor cells damage from oxygen-glucose deprivation in vitro. Biochem Biophys Res Commun 498(1):1-8
abstractText  The contribution of microglial activation to oligodendrocyte precursor cell (OPC) damage in the brain is considered to be a principal pathophysiological feature of periventricular leukomalacia (PVL). Nicotinamide adenine dinucleotide phosphate oxidase (NOX)-dependent reactive oxygen species (ROS) produced in microglia has been shown to be significantly toxic to OPCs. The voltage-gated proton channel Hv1 is selectively expressed in microglia and is essential for NOX-dependent ROS production in the central nervous system. This study aimed to investigate the effects of microglial Hv1 deficiency on the protection of OPCs from oxygen-glucose deprivation (OGD)-induced injury in vitro. In the present study, the levels of OGD-induced ROS and pro-inflammatory cytokine production were dramatically lower in Hv1-deficient microglia (Hv1(-/-)) than in wild-type (WT) microglia. Following OGD, OPCs co-cultured with WT microglia had increased apoptosis and decreased proliferation and maturation, while those co-cultured with Hv1(-/-) microglia had attenuated apoptosis and greater proliferation and differentiation. Furthermore, the attenuated damage and enhanced regeneration of OPCs were associated with decreases in extracellular signal-regulated kinase 1/2 and p38 mitogen-activated protein kinase phosphorylation. These results indicate that the protective effects of Hv1 deficiency on OPCs are due to the suppression of ROS and pro-inflammatory cytokine production in microglia. We thus suggest that the microglial proton channel Hv1 may be a potential therapeutic target in PVL.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

5 Authors

3 Bio Entities

Trail: Publication

0 Expression