First Author | Wan Y | Year | 2009 |
Journal | J Biol Chem | Volume | 284 |
Issue | 16 | Pages | 10367-75 |
PubMed ID | 19224918 | Mgi Jnum | J:149258 |
Mgi Id | MGI:3848110 | Doi | 10.1074/jbc.M807822200 |
Citation | Wan Y, et al. (2009) Interleukin-1 receptor-associated kinase 2 is critical for lipopolysaccharide-mediated post-transcriptional control. J Biol Chem 284(16):10367-75 |
abstractText | IRAK2, a member of the interleukin-1 receptor-associated kinase (IRAK) family, has been implicated in Toll-like receptor (TLR)-mediated signaling. We generated IRAK2-deficient mice to examine its function in detail. These mice are resistant to lipopolysaccharide-induced septic shock, because of impaired TLR4-mediated induction of pro-inflammatory cytokines and chemokines. Although IRAK2 deficiency did not affect TLR4-mediated NFkappaB activation, a reduction of lipopolysaccharide (LPS)-mediated mRNA stabilization contributed to the reduced cytokine and chemokine production observed in bone marrow-derived macrophages from IRAK2-deficient mice. Furthermore, the ratios of LPS-induced cytokine and chemokine mRNAs in translation-active (polysomal) versus translation-inactive (free ribosomes) pools were reduced in IRAK2-deficient macrophages compared with wild type macrophages. Importantly, LPS-induced phosphorylation of MKK3/6, MNK1, and eIF4E was significantly reduced in IRAK2-deficient macrophages compared with wild type macrophages. Moreover, LPS stimulation induced an interaction of IRAK2 with TRAF6, MKK3/6, and MK2, implicating a critical role for mitogen-activated protein kinase signaling in LPS-induced IRAK2-mediated post-transcriptional control. These results reveal that IRAK2 is required for LPS-mediated post-transcriptional control of cytokine and chemokine expression, which plays an essential role in TLR4-induced septic shock. |