|  Help  |  About  |  Contact Us

Publication : Valve Endothelial Cell-Derived Tgfβ1 Signaling Promotes Nuclear Localization of Sox9 in Interstitial Cells Associated With Attenuated Calcification.

First Author  Huk DJ Year  2016
Journal  Arterioscler Thromb Vasc Biol Volume  36
Issue  2 Pages  328-38
PubMed ID  26634652 Mgi Jnum  J:246377
Mgi Id  MGI:5921830 Doi  10.1161/ATVBAHA.115.306091
Citation  Huk DJ, et al. (2016) Valve Endothelial Cell-Derived Tgfbeta1 Signaling Promotes Nuclear Localization of Sox9 in Interstitial Cells Associated With Attenuated Calcification. Arterioscler Thromb Vasc Biol 36(2):328-38
abstractText  OBJECTIVE: Aortic valve disease, including calcification, affects >2% of the human population and is caused by complex interactions between multiple risk factors, including genetic mutations, the environment, and biomechanics. At present, there are no effective treatments other than surgery, and this is because of the limited understanding of the mechanisms that underlie the condition. Previous work has shown that valve interstitial cells within the aortic valve cusps differentiate toward an osteoblast-like cell and deposit bone-like matrix that leads to leaflet stiffening and calcific aortic valve stenosis. However, the mechanisms that promote pathological phenotypes in valve interstitial cells are unknown. APPROACH AND RESULTS: Using a combination of in vitro and in vivo tools with mouse, porcine, and human tissue, we show that in valve interstitial cells, reduced Sox9 expression and nuclear localization precedes the onset of calcification. In vitro, Sox9 nuclear export and calcific nodule formation is prevented by valve endothelial cells. However, in vivo, loss of Tgfbeta1 in the endothelium leads to reduced Sox9 expression and calcific aortic valve disease. CONCLUSIONS: Together, these findings suggest that reduced nuclear localization of Sox9 in valve interstitial cells is an early indicator of calcification, and therefore, pharmacological targeting to prevent nuclear export could serve as a novel therapeutic tool in the prevention of calcification and stenosis.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

7 Bio Entities

Trail: Publication

0 Expression