|  Help  |  About  |  Contact Us

Publication : Maintenance of functional equivalence during paralogous Hox gene evolution.

First Author  Greer JM Year  2000
Journal  Nature Volume  403
Issue  6770 Pages  661-5
PubMed ID  10688203 Mgi Jnum  J:60296
Mgi Id  MGI:1353139 Doi  10.1038/35001077
Citation  Greer JM, et al. (2000) Maintenance of functional equivalence during paralogous Hox gene evolution [see comments]. Nature 403(6770):661-5
abstractText  Biological diversity is driven mainly by gene duplication followed by mutation and selection. This divergence in either regulatory or protein-coding sequences can result in quite different biological functions for even closely related genes. This concept is exemplified by the mammalian Hox gene complex, a group of 39 genes which are located on 4 linkage groups, dispersed on 4 chromosomes. The evolution of this complex began with amplification in cis of a primordial Hox gene to produce 13 members, followed by duplications in trans of much of the entire unit. As a consequence, Hox genes that occupy the same relative position along the 5' to 3' chromosomal coordinate (trans-paralogous genes) share more similarity in sequence and expression pattern than do adjacent Hox genes on the same chromosome. Studies in mice indicate that although individual family members may have unique biological roles, they also share overlapping functions with their paralogues. Here we show that the proteins encoded by the paralogous genes, Hoxa3 and Hoxd3, can carry out identical biological functions, and that the different roles attributed to these genes are the result of quantitative modulations in gene expression.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

9 Bio Entities

Trail: Publication

0 Expression