|  Help  |  About  |  Contact Us

Publication : EBAG9 controls CD8+ T cell memory formation responding to tumor challenge in mice.

First Author  Rehm A Year  2022
Journal  JCI Insight Volume  7
Issue  11 PubMed ID  35482418
Mgi Jnum  J:326198 Mgi Id  MGI:7294920
Doi  10.1172/jci.insight.155534 Citation  Rehm A, et al. (2022) EBAG9 controls CD8+ T cell memory formation responding to tumor challenge in mice. JCI Insight 7(11):e155534
abstractText  Insight into processes that determine CD8+ T cell memory formation has been obtained from infection models. These models are biased toward an inflammatory milieu and often use high-avidity CD8+ T cells in adoptive-transfer procedures. It is unclear whether these conditions mimic the differentiation processes of an endogenous repertoire that proceed upon noninflammatory conditions prevailing in premalignant tumor lesions. We examined the role of cytolytic capacity on CD8+ T cell fate decisions when primed by tumor cells or by minor histocompatibility antigen-mismatched leukocytes. CD8+ memory commitment was analyzed in Ebag9-deficient mice that exhibited enhanced tumor cell lysis. This property endowed Ebag9-/- mice with extended control of Tcl-1 oncogene-induced chronic lymphocytic leukemia progression. In Ebag9-/- mice, an expanded memory population was obtained for anti-HY and anti-SV-40 T antigen-specific T cells, despite unchanged effector frequencies in the primary response. By comparing the single-cell transcriptomes of CD8+ T cells responding to tumor cell vaccination, we found differential distribution of subpopulations between Ebag9+/+ and Ebag9-/- T cells. In Ebag9-/- cells, these larger clusters contained genes encoding transcription factors regulating memory cell differentiation and anti-apoptotic gene functions. Our findings link EBAG9-controlled cytolytic activity and the commitment to the CD8+ memory lineage.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

9 Bio Entities

Trail: Publication

0 Expression