|  Help  |  About  |  Contact Us

Publication : Loss of Family with Sequence Similarity 13, Member A Exacerbates Pulmonary Fibrosis Potentially by Promoting Epithelial to Mesenchymal Transition.

First Author  Rahardini EP Year  2020
Journal  Kobe J Med Sci Volume  65
Issue  3 Pages  E100-E109
PubMed ID  32029695 Mgi Jnum  J:284766
Mgi Id  MGI:6392118 Citation  Rahardini EP, et al. (2020) Loss of Family with Sequence Similarity 13, Member A Exacerbates Pulmonary Fibrosis Potentially by Promoting Epithelial to Mesenchymal Transition. Kobe J Med Sci 65(3):E100-E109
abstractText  Idiopathic pulmonary fibrosis (IPF) is a devastating disease with poor prognosis due to limited clinical treatment options. IPF is characterized by the augmented deposition of extracellular matrix driven by myofibroblasts, and the epithelial-mesenchymal transition (EMT) has been known to play an essential role in the mechanism of pulmonary fibrosis. Previous genome-wide association study identified Fam13a as one of genes that showed genetic link with IPF and chronic obstructive pulmonary disease. Here, we analyzed the role of Fam13a in the pathogenesis of pulmonary fibrosis using Fam13a-deficient mice. We found that Fam13a was down-regulated in mouse lungs of bleomycin-induced pulmonary fibrosis model. Of note, genetic deletion of Fam13a exacerbated the lung fibrosis induced by bleomycin in association with enhanced EMT in mice. Moreover, silencing of Fam13a accelerated EMT induced by TGF-beta and TNF-alpha in alveolar epithelial cells, accompanied by increased active beta-catenin and its nuclear accumulation. Our data revealed a crucial role of Fam13a in the development of pulmonary fibrosis potentially through inhibiting EMT, and thus Fam13a has a therapeutic potential in the treatment of IPF.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

3 Bio Entities

Trail: Publication

0 Expression