First Author | De Crescenzo V | Year | 2012 |
Journal | Proc Natl Acad Sci U S A | Volume | 109 |
Issue | 2 | Pages | 610-5 |
PubMed ID | 22203976 | Mgi Jnum | J:179979 |
Mgi Id | MGI:5304957 | Doi | 10.1073/pnas.1115111108 |
Citation | De Crescenzo V, et al. (2012) Type 1 ryanodine receptor knock-in mutation causing central core disease of skeletal muscle also displays a neuronal phenotype. Proc Natl Acad Sci U S A 109(2):610-5 |
abstractText | The type 1 ryanodine receptor (RyR1) is expressed widely in the brain, with high levels in the cerebellum, hippocampus, and hypothalamus. We have shown that L-type Ca(2+) channels in terminals of hypothalamic magnocellular neurons are coupled to RyRs, as they are in skeletal muscle, allowing voltage-induced Ca(2+) release (VICaR) from internal Ca(2+) stores without Ca(2+) influx. Here we demonstrate that RyR1 plays a role in VICaR in nerve terminals. Furthermore, in heterozygotes from the Ryr1(I4895T/WT) (IT/+) mouse line, carrying a knock-in mutation corresponding to one that causes a severe form of human central core disease, VICaR is absent, demonstrating that type 1 RyR mediates VICaR and that these mice have a neuronal phenotype. The absence of VICaR was shown in two ways: first, depolarization in the absence of Ca(2+) influx elicited Ca(2+)syntillas (scintilla, spark, in a nerve terminal, a SYNaptic structure) in WT, but not in mutant terminals; second, in the presence of extracellular Ca(2+), IT/+ terminals showed a twofold decrease in global Ca(2+) transients, with no change in plasmalemmal Ca(2+) current. From these studies we draw two conclusions: (i) RyR1 plays a role in VICaR in hypothalamic nerve terminals; and (ii) a neuronal alteration accompanies the myopathy in IT/+ mice, and, possibly in humans carrying the corresponding RyR1 mutation. |