|  Help  |  About  |  Contact Us

Publication : Diacylglycerol Lipase-Alpha Regulates Hippocampal-Dependent Learning and Memory Processes in Mice.

First Author  Schurman LD Year  2019
Journal  J Neurosci Volume  39
Issue  30 Pages  5949-5965
PubMed ID  31127001 Mgi Jnum  J:277760
Mgi Id  MGI:6333065 Doi  10.1523/JNEUROSCI.1353-18.2019
Citation  Schurman LD, et al. (2019) Diacylglycerol Lipase-Alpha Regulates Hippocampal-Dependent Learning and Memory Processes in Mice. J Neurosci 39(30):5949-5965
abstractText  Diacylglycerol lipase-alpha (DAGL-alpha), the principal biosynthetic enzyme of the endogenous cannabinoid 2-arachidonylglycerol (2-AG) on neurons, plays a key role in CB1 receptor-mediated synaptic plasticity and hippocampal neurogenesis, but its contribution to global hippocampal-mediated processes remains unknown. Thus, the present study examines the role that DAGL-alpha plays on LTP in hippocampus, as well as in hippocampal-dependent spatial learning and memory tasks, and on the production of endocannabinoid and related lipids through the use of complementary pharmacologic and genetic approaches to disrupt this enzyme in male mice. Here we show that DAGL-alpha gene deletion or pharmacological inhibition disrupts LTP in CA1 of the hippocampus but elicits varying magnitudes of behavioral learning and memory deficits in mice. In particular, DAGL-alpha(-/-) mice display profound impairments in the Object Location assay and Morris Water Maze (MWM) acquisition engaging in nonspatial search strategies. In contrast, WT mice administered the DAGL-alpha inhibitor DO34 show delays in MWM acquisition and reversal learning, but no deficits in expression, extinction, forgetting, or perseveration processes in this task, as well as no impairment in Object Location. The deficits in synaptic plasticity and MWM performance occur in concert with decreased 2-AG and its major lipid metabolite (arachidonic acid), but increases of a 2-AG diacylglycerol precursor in hippocampus, PFC, striatum, and cerebellum. These novel behavioral and electrophysiological results implicate a direct and perhaps selective role of DAGL-alpha in the integration of new spatial information.SIGNIFICANCE STATEMENT Here we show that genetic deletion or pharmacologic inhibition of diacylglycerol lipase-alpha (DAGL-alpha) impairs hippocampal CA1 LTP, differentially disrupts spatial learning and memory performance in Morris water maze (MWM) and Object Location tasks, and alters brain levels of endocannabinoids and related lipids. Whereas DAGL-alpha(-/-) mice exhibit profound phenotypic spatial memory deficits, a DAGL inhibitor selectively impairs the integration of new information in MWM acquisition and reversal tasks, but not memory processes of expression, extinction, forgetting, or perseveration, and does not affect performance in the Objection Location task. The findings that constitutive or short-term DAGL-alpha disruption impairs learning and memory at electrophysiological and selective in vivo levels implicate this enzyme as playing a key role in the integration of new spatial information.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

3 Bio Entities

Trail: Publication

0 Expression