|  Help  |  About  |  Contact Us

Publication : The p65 subunit of NF-kappaB binds to PGC-1alpha, linking inflammation and metabolic disturbances in cardiac cells.

First Author  Alvarez-Guardia D Year  2010
Journal  Cardiovasc Res Volume  87
Issue  3 Pages  449-58
PubMed ID  20211864 Mgi Jnum  J:176102
Mgi Id  MGI:5288311 Doi  10.1093/cvr/cvq080
Citation  Alvarez-Guardia D, et al. (2010) The p65 subunit of NF-kappaB binds to PGC-1alpha, linking inflammation and metabolic disturbances in cardiac cells. Cardiovasc Res 87(3):449-58
abstractText  AIMS: Nuclear factor-kappaB (NF-kappaB) is a transcription factor induced by a wide range of stimuli, including hyperglycaemia and pro-inflammatory cytokines. It is associated with cardiac hypertrophy and heart failure. It was previously reported that the NF-kappaB-mediated inhibition of proliferator-activated receptor-gamma coactivator-1alpha (PGC-1alpha) might explain the shift in glucose metabolism during cardiac pathological processes induced by pro-inflammatory stimuli, although the specific mechanisms remain to be elucidated. We addressed the specific mechanisms by which exposure to tumour necrosis factor-alpha (TNF-alpha) results in PGC-1alpha down-regulation in cardiac cells and, as a consequence, in the metabolic dysregulation that underlies heart dysfunction and failure. METHODS AND RESULTS: By using coimmunoprecipitation studies, we report for the first time that the p65 subunit of NF-kappaB is constitutively bound to PGC-1alpha in human cardiac cells and also in mouse heart, and that NF-kappaB activation by TNF-alpha exposure increases this binding. Overexpression and gene silencing analyses demonstrated that the main factor limiting the degree of this association is p65, because only the modulation of this protein modified the physical interaction. Our data show that the increased physical interaction between p65 and PGC-1alpha after NF-kappaB activation is responsible for the reduction in PGC-1alpha expression and subsequent dysregulation of glucose oxidation. CONCLUSION: On the basis of these data, we propose that p65 directly represses PGC-1alpha activity in cardiac cells, thereby leading to a reduction in pyruvate dehydrogenase kinase 4 (PDK4) expression and the subsequent increase in glucose oxidation observed during the proinflammatory state.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

5 Bio Entities

Trail: Publication

0 Expression