|  Help  |  About  |  Contact Us

Publication : The nonvesicular sterol transporter Aster-C plays a minor role in whole body cholesterol balance.

First Author  Banerjee R Year  2024
Journal  Front Physiol Volume  15
Pages  1371096 PubMed ID  38694206
Mgi Jnum  J:347902 Mgi Id  MGI:7627641
Doi  10.3389/fphys.2024.1371096 Citation  Banerjee R, et al. (2024) The nonvesicular sterol transporter Aster-C plays a minor role in whole body cholesterol balance. Front Physiol 15:1371096
abstractText  INTRODUCTION: The Aster-C protein (encoded by the Gramd1c gene) is an endoplasmic reticulum (ER) resident protein that has been reported to transport cholesterol from the plasma membrane to the ER. Although there is a clear role for the closely-related Aster-B protein in cholesterol transport and downstream esterification in the adrenal gland, the specific role for Aster-C in cholesterol homeostasis is not well understood. Here, we have examined whole body cholesterol balance in mice globally lacking Aster-C under low or high dietary cholesterol conditions. METHOD: Age-matched Gramd1c (+/+) and Gramd1c (-/-) mice were fed either low (0.02%, wt/wt) or high (0.2%, wt/wt) dietarycholesterol and levels of sterol-derived metabolites were assessed in the feces, liver, and plasma. RESULTS: Compared to wild type controls (Gramd1c (+/+)) mice, mice lackingGramd1c (Gramd1c (-/-)) have no significant alterations in fecal, liver, or plasma cholesterol. Given the potential role for Aster C in modulating cholesterol metabolism in diverse tissues, we quantified levels of cholesterol metabolites such as bile acids, oxysterols, and steroid hormones. Compared to Gramd1c (+/+) controls, Gramd1c (-/-) mice had modestly reduced levels of select bile acid species and elevated cortisol levels, only under low dietary cholesterol conditions. However, the vast majority of bile acids, oxysterols, and steroid hormones were unaltered in Gramd1c (-/-) mice. Bulk RNA sequencing in the liver showed that Gramd1c (-/-) mice did not exhibit alterations in sterol-sensitive genes, but instead showed altered expression of genes in major urinary protein and cytochrome P450 (CYP) families only under low dietary cholesterol conditions. DISCUSSION: Collectively, these data indicate nominal effects of Aster-C on whole body cholesterol transport and metabolism under divergent dietary cholesterol conditions. These results strongly suggest that Aster-C alone is not sufficient to control whole body cholesterol balance, but can modestly impact circulating cortisol and bile acid levels when dietary cholesterol is limited.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

5 Bio Entities

Trail: Publication

0 Expression