|  Help  |  About  |  Contact Us

Publication : Rapamycin and chloroquine: the in vitro and in vivo effects of autophagy-modifying drugs show promising results in valosin containing protein multisystem proteinopathy.

First Author  Nalbandian A Year  2015
Journal  PLoS One Volume  10
Issue  4 Pages  e0122888
PubMed ID  25884947 Mgi Jnum  J:233484
Mgi Id  MGI:5784824 Doi  10.1371/journal.pone.0122888
Citation  Nalbandian A, et al. (2015) Rapamycin and chloroquine: the in vitro and in vivo effects of autophagy-modifying drugs show promising results in valosin containing protein multisystem proteinopathy. PLoS One 10(4):e0122888
abstractText  Mutations in the valosin containing protein (VCP) gene cause hereditary Inclusion body myopathy (hIBM) associated with Paget disease of bone (PDB), frontotemporal dementia (FTD), more recently termed multisystem proteinopathy (MSP). Affected individuals exhibit scapular winging and die from progressive muscle weakness, and cardiac and respiratory failure, typically in their 40s to 50s. Histologically, patients show the presence of rimmed vacuoles and TAR DNA-binding protein 43 (TDP-43)-positive large ubiquitinated inclusion bodies in the muscles. We have generated a VCPR155H/+ mouse model which recapitulates the disease phenotype and impaired autophagy typically observed in patients with VCP disease. Autophagy-modifying agents, such as rapamycin and chloroquine, at pharmacological doses have previously shown to alter the autophagic flux. Herein, we report results of administration of rapamycin, a specific inhibitor of the mechanistic target of rapamycin (mTOR) signaling pathway, and chloroquine, a lysosomal inhibitor which reverses autophagy by accumulating in lysosomes, responsible for blocking autophagy in 20-month old VCPR155H/+ mice. Rapamycin-treated mice demonstrated significant improvement in muscle performance, quadriceps histological analysis, and rescue of ubiquitin, and TDP-43 pathology and defective autophagy as indicated by decreased protein expression levels of LC3-I/II, p62/SQSTM1, optineurin and inhibiting the mTORC1 substrates. Conversely, chloroquine-treated VCPR155H/+ mice revealed progressive muscle weakness, cytoplasmic accumulation of TDP-43, ubiquitin-positive inclusion bodies and increased LC3-I/II, p62/SQSTM1, and optineurin expression levels. Our in vitro patient myoblasts studies treated with rapamycin demonstrated an overall improvement in the autophagy markers. Targeting the mTOR pathway ameliorates an increasing list of disorders, and these findings suggest that VCP disease and related neurodegenerative multisystem proteinopathies can now be included as disorders that can potentially be ameliorated by rapalogs.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

3 Bio Entities

Trail: Publication

0 Expression