First Author | Cui YH | Year | 2021 |
Journal | Nat Commun | Volume | 12 |
Issue | 1 | Pages | 2183 |
PubMed ID | 33846348 | Mgi Jnum | J:306306 |
Mgi Id | MGI:6713681 | Doi | 10.1038/s41467-021-22469-6 |
Citation | Cui YH, et al. (2021) Autophagy of the m(6)A mRNA demethylase FTO is impaired by low-level arsenic exposure to promote tumorigenesis. Nat Commun 12(1):2183 |
abstractText | Here we show that FTO as an N(6)-methyladenosine (m(6)A) RNA demethylase is degraded by selective autophagy, which is impaired by low-level arsenic exposure to promote tumorigenesis. We found that in arsenic-associated human skin lesions, FTO is upregulated, while m(6)A RNA methylation is downregulated. In keratinocytes, chronic relevant low-level arsenic exposure upregulated FTO, downregulated m(6)A RNA methylation, and induced malignant transformation and tumorigenesis. FTO deletion inhibited arsenic-induced tumorigenesis. Moreover, in mice, epidermis-specific FTO deletion prevented skin tumorigenesis induced by arsenic and UVB irradiation. Targeting FTO genetically or pharmacologically inhibits the tumorigenicity of arsenic-transformed tumor cells. We identified NEDD4L as the m(6)A-modified gene target of FTO. Finally, arsenic stabilizes FTO protein through inhibiting p62-mediated selective autophagy. FTO upregulation can in turn inhibit autophagy, leading to a positive feedback loop to maintain FTO accumulation. Our study reveals FTO-mediated dysregulation of mRNA m(6)A methylation as an epitranscriptomic mechanism to promote arsenic tumorigenicity. |