First Author | Du CT | Year | 2018 |
Journal | Int J Mol Sci | Volume | 19 |
Issue | 4 | PubMed ID | 29587465 |
Mgi Jnum | J:273781 | Mgi Id | MGI:6282514 |
Doi | 10.3390/ijms19040993 | Citation | Du CT, et al. (2018) MicroRNA-146a Deficiency Protects against Listeria monocytogenes Infection by Modulating the Gut Microbiota. Int J Mol Sci 19(4):993 |
abstractText | The gut microbiota and microRNAs play important roles in the defense against infection. However, the role of miR-146a in L. monocytogenes infection and gut microbiota remains unclear. We tried to determine whether miR-146a controlled L. monocytogenes infection by regulating the gut microbiota. Wild-type and miR-146a-deficient mice or macrophages were used to characterize the impact of miR-146a on animal survival, cell death, bacterial clearance, and gut microbiota following L. monocytogenes challenge. We found that L. monocytogenes infection induced miR-146a expression both in vitro and in vivo. When compared to wild-type mice, miR-146a-deficient mice were more resistant to L. monocytogenes infection. MiR-146a deficiency in macrophages resulted in reduced invasion and intracellular survival of L. monocytogenes. High-throughput sequencing of 16S rRNA revealed that the gut microbiota composition differed between miR-146a-deficient and wild-type mice. Relative to wild-type mice, miR-146a-deficient mice had decreased levels of the Proteobacteria phylum, Prevotellaceae family, and Parasutterella genus, and significantly increased short-chain fatty acid producing bacteria, including the genera Alistipes, Blautia, Coprococcus_1, and Ruminococcus_1. Wild-type mice co-housed with miR-146a-deficient mice had increased resistance to L. monocytogenes, indicating that miR-146a deficiency guides the gut microbiota to alleviate infection. Together, these results suggest that miR-146a deficiency protects against L. monocytogenes infection by regulating the gut microbiota. |