|  Help  |  About  |  Contact Us

Publication : Both maternal and offspring Elovl2 genotypes determine systemic DHA levels in perinatal mice.

First Author  Pauter AM Year  2017
Journal  J Lipid Res Volume  58
Issue  1 Pages  111-123
PubMed ID  27864326 Mgi Jnum  J:237918
Mgi Id  MGI:5817517 Doi  10.1194/jlr.M070862
Citation  Pauter AM, et al. (2017) Both maternal and offspring Elovl2 genotypes determine systemic DHA levels in perinatal mice. J Lipid Res 58(1):111-123
abstractText  The molecular details relevant to dietary supplementation of the omega-3 fatty acid DHA in mothers as well as in their offspring are not clear. The PUFA elongase, elongation of very long-chain fatty acid (ELOVL)2, is a critical enzyme in the formation of DHA in mammals. In order to address the question regarding the origin of DHA during perinatal life, we have used DHA-deficient Elovl2-ablated mice as a model system to analyze the maternal impact on the DHA level in their offspring of various genotypes. Elovl2-/- mothers maintained on control diet had significantly lower systemic levels of DHA compared with the Elovl2+/- and Elovl2+/+ mothers. Dietary DHA administration during the pregnancy and lactation periods led to increased DHA accretion in maternal tissues and serum of all genotypes. The proportion of DHA in the liver and serum of the Elovl2-/- offspring was significantly lower than in the Elovl2+/+ offspring. Remarkably, the DHA level in the Elovl2+/- offspring nursed by DHA-free-fed Elovl2-/- mothers was almost as high as in +/+ pups delivered by +/+ mothers, suggesting that endogenous synthesis in the offspring can compensate for maternal DHA deficiency. Maternal DHA supplementation had a strong impact on offspring hepatic gene expression, especially of the fatty acid transporter, Mfsd2a, suggesting a dynamic interplay between DHA synthesis and DHA uptake in the control of systemic levels in the offspring.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

4 Bio Entities

Trail: Publication

0 Expression