|  Help  |  About  |  Contact Us

Publication : Anterior cingulate cortex dysfunction underlies social deficits in Shank3 mutant mice.

First Author  Guo B Year  2019
Journal  Nat Neurosci Volume  22
Issue  8 Pages  1223-1234
PubMed ID  31332372 Mgi Jnum  J:281329
Mgi Id  MGI:6378287 Doi  10.1038/s41593-019-0445-9
Citation  Guo B, et al. (2019) Anterior cingulate cortex dysfunction underlies social deficits in Shank3 mutant mice. Nat Neurosci 22(8):1223-1234
abstractText  Social deficit is a core clinical feature of autism spectrum disorder (ASD) but the underlying neural mechanisms remain largely unclear. We demonstrate that structural and functional impairments occur in glutamatergic synapses in the pyramidal neurons of the anterior cingulate cortex (ACC) in mice with a mutation in Shank3, a high-confidence candidate ASD gene. Conditional knockout of Shank3 in the ACC was sufficient to generate excitatory synaptic dysfunction and social interaction deficits, whereas selective enhancement of ACC activity, restoration of SHANK3 expression in the ACC, or systemic administration of an alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor-positive modulator improved social behavior in Shank3 mutant mice. Our findings provide direct evidence for the notion that the ACC has a role in the regulation of social behavior in mice and indicate that ACC dysfunction may be involved in social impairments in ASD.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

7 Bio Entities

Trail: Publication

0 Expression