|  Help  |  About  |  Contact Us

Publication : miR-34a promotes fibrosis in aged lungs by inducing alveolarepithelial dysfunctions.

First Author  Cui H Year  2017
Journal  Am J Physiol Lung Cell Mol Physiol Volume  312
Issue  3 Pages  L415-L424
PubMed ID  27979858 Mgi Jnum  J:239953
Mgi Id  MGI:5882130 Doi  10.1152/ajplung.00335.2016
Citation  Cui H, et al. (2017) miR-34a promotes fibrosis in aged lungs by inducing alveolarepithelial dysfunctions. Am J Physiol Lung Cell Mol Physiol 312(3):L415-L424
abstractText  Idiopathic pulmonary fibrosis is a well-known age-related disease. However, much less recognized has been the aging associated pathogenesis of this disorder. As we and others previously showed that dysregulation of micro-RNAs (miRNAs) was an important mechanism involved in pulmonary fibrosis, the role of these molecules in this pathology in the aged population has not been investigated (Cushing L, Kuang PP, Qian J, Shao F, Wu J, Little F, Thannickal VJ, Cardoso WV, Lu J. Am J Respir Cell Mol Biol 45: 287-294, 2011; Liu G, Friggeri A, Yang Y, Milosevic J, Ding Q, Thannickal VJ, Kaminski N, Abraham E. J Exp Med 207: 1589-1597, 2010; Pandit KV, Corcoran D, Yousef H, Yarlagadda M, Tzouvelekis A, Gibson KF, Konishi K, Yousem SA, Singh M, Handley D, Richards T, Selman M, Watkins SC, Pardo A, Ben-Yehudah A, Bouros D, Eickelberg O, Ray P, Benos PV, Kaminski N. Am J Respir Crit Care Med 182: 220-229, 2010). In this study, by using a lung fibrosis model established in old mice, we found that ablation of miR-34a protected aged animals from developing experimental lung fibrosis. miR-34a was upregulated in lung epithelial cells, but not in lung fibroblasts of aged mice, and miR-34a expression was further increased in epithelial cells of the fibrotic lungs of these old animals. We found that miR-34a induced dysfunctions in alveolar epithelial cells (AECs), as evidenced by increased cellular senescence and apoptosis and mitochondrial aberrations. More importantly, these abnormalities were attenuated in AECs of the fibrotic lungs of aged miR-34a-/- mice. We found that miR-34a targeted Sirt1, a master anti-aging regulator, and two key cell cycle modulators, E2F3 and cyclin E2, in lung epithelial cells, and the repression of these targets was relieved in miR-34a-deficient AECs. In summary, our data suggest that elevated AEC miR-34a plays a critical role in the pathogenesis of pulmonary fibrosis in the aged population. Our study also indicates miR-34a to be a more precise miRNA target for treating this disease that overwhelmingly affects people of advanced age.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

6 Bio Entities

Trail: Publication

0 Expression