First Author | Goodell DJ | Year | 2017 |
Journal | Cell Rep | Volume | 19 |
Issue | 11 | Pages | 2231-2243 |
PubMed ID | 28614711 | Mgi Jnum | J:255856 |
Mgi Id | MGI:6103421 | Doi | 10.1016/j.celrep.2017.05.068 |
Citation | Goodell DJ, et al. (2017) DAPK1 Mediates LTD by Making CaMKII/GluN2B Binding LTP Specific. Cell Rep 19(11):2231-2243 |
abstractText | The death-associated protein kinase 1 (DAPK1) is a potent mediator of neuronal cell death. Here, we find that DAPK1 also functions in synaptic plasticity by regulating the Ca(2+)/calmodulin (CaM)-dependent protein kinase II (CaMKII). CaMKII and T286 autophosphorylation are required for both long-term potentiation (LTP) and depression (LTD), two opposing forms of synaptic plasticity underlying learning, memory, and cognition. T286-autophosphorylation induces CaMKII binding to the NMDA receptor (NMDAR) subunit GluN2B, which mediates CaMKII synaptic accumulation during LTP. We find that the LTP specificity of CaMKII synaptic accumulation is due to its LTD-specific suppression by calcineurin (CaN)-dependent DAPK1 activation, which in turn blocks CaMKII binding to GluN2B. This suppression is enabled by competitive DAPK1 versus CaMKII binding to GluN2B. Negative regulation of DAPK1/GluN2B binding by Ca(2+)/CaM results in synaptic DAPK1 removal during LTP but retention during LTD. A pharmacogenetic approach showed that suppression of CaMKII/GluN2B binding is a DAPK1 function required for LTD. |