|  Help  |  About  |  Contact Us

Publication : Chronic blockade of extrasynaptic NMDA receptors ameliorates synaptic dysfunction and pro-death signaling in Huntington disease transgenic mice.

First Author  Dau A Year  2014
Journal  Neurobiol Dis Volume  62
Pages  533-42 PubMed ID  24269729
Mgi Jnum  J:210377 Mgi Id  MGI:5570981
Doi  10.1016/j.nbd.2013.11.013 Citation  Dau A, et al. (2014) Chronic blockade of extrasynaptic NMDA receptors ameliorates synaptic dysfunction and pro-death signaling in Huntington disease transgenic mice. Neurobiol Dis 62:533-42
abstractText  In the YAC128 mouse model of Huntington disease (HD), elevated extrasynaptic NMDA receptor (Ex-NMDAR) expression contributes to the onset of striatal dysfunction and atrophy. A shift in the balance of synaptic-extrasynaptic NMDAR signaling and localization is paralleled by early stage dysregulation of intracellular calcium signaling pathways, including calpain and p38 MAPK activation, that couple to pro-death cascades. However, whether aberrant calcium signaling is a consequence of elevated Ex-NMDAR expression in HD is unknown. Here, we aimed to identify calcium-dependent pathways downstream of Ex-NMDARs in HD. Chronic (2-month) treatment of YAC128 and WT mice with memantine (1 and 10mg/kg/day), which at a low dose selectively blocks Ex-NMDARs, reduced striatal Ex-NMDAR expression and current in 4-month old YAC128 mice without altering synaptic NMDAR levels. In contrast, calpain activity was not affected by memantine treatment, and was elevated in untreated YAC128 mice at 1.5months but not 4months of age. In YAC128 mice, memantine at 1mg/kg/day rescued CREB shut-off, while both doses suppressed p38 MAPK activation to WT levels. Taken together, our results indicate that Ex-NMDAR activity perpetuates increased extrasynaptic NMDAR expression and drives dysregulated p38 MAPK and CREB signaling in YAC128 mice. Elucidation of the pathways downstream of Ex-NMDARs in HD could help provide novel therapeutic targets for this disease.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

3 Bio Entities

Trail: Publication

0 Expression