|  Help  |  About  |  Contact Us

Publication : NLRP3 Inflammasome Involvement in the Organ Damage and Impaired Spermatogenesis Induced by Testicular Ischemia and Reperfusion in Mice.

First Author  Minutoli L Year  2015
Journal  J Pharmacol Exp Ther Volume  355
Issue  3 Pages  370-80
PubMed ID  26407722 Mgi Jnum  J:317100
Mgi Id  MGI:6844011 Doi  10.1124/jpet.115.226936
Citation  Minutoli L, et al. (2015) NLRP3 Inflammasome Involvement in the Organ Damage and Impaired Spermatogenesis Induced by Testicular Ischemia and Reperfusion in Mice. J Pharmacol Exp Ther 355(3):370-80
abstractText  We investigated the role of the nucleotide-binding oligomerization domain (NOD)-like receptor family pyrin domain containing 3 (NLRP3) inflammasome during testis ischemia and reperfusion injury (TI/R) in wild-type (WT) and NLRP3 knock-out (KO) mice. WT and KO mice underwent 1 hour testicular ischemia followed by 4 hours and 1 and 7 days of reperfusion or a sham TI/R. Furthermore, two groups of WT mice were treated at the beginning of reperfusion and up to 7 days with two inflammasome inhibitors, BAY 11-7082 (20 mg/kg i.p.) or Brilliant Blue G (45.5 mg/kg i.p.), or vehicle. Animals were killed with a pentobarbital sodium overdose at 4 hours and 1 and 7 days, and bilateral orchidectomies were performed. Biochemical and morphologic studies were carried out in all groups. TI/R in WT mice significantly increased caspase-1 and interleukin (IL)-1beta mRNA after 4 hours and IL-18 mRNA at 1 day of reperfusion (P </= 0.05). There was also a significant increase in caspase-3 and terminal deoxynucleotidyl transferase-mediated digoxigenin-deoxyuridine nick-end labeling-positive cells, marked histologic damage, and altered spermatogenesis in WT mice in both testes after 1 and 7 days of reperfusion. KO TI/R mice, WT TI/R BAY 11-7082, and Brilliant Blue G treated mice showed a significant reduced IL-1beta and IL-18 mRNA expression, blunted caspase-1 and -3 expression, minor histologic damages, low terminal deoxynucleotidyl transferase-mediated digoxigenin-deoxyuridine nick-end labeling activity, and preserved spermatogenesis. These data suggest that the activation of NLRP3 plays a key role in TI/R, and its inhibition might represent a therapeutic target for the management of patients with unilateral testicular torsion.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

3 Bio Entities

Trail: Publication

0 Expression