First Author | O'Sullivan JA | Year | 2018 |
Journal | J Leukoc Biol | Volume | 104 |
Issue | 1 | Pages | 11-19 |
PubMed ID | 29601103 | Mgi Jnum | J:263543 |
Mgi Id | MGI:6188331 | Doi | 10.1002/JLB.2HI0917-391R |
Citation | O'Sullivan JA, et al. (2018) Frontline Science: Characterization of a novel mouse strain expressing human Siglec-8 only on eosinophils. J Leukoc Biol 104(1):11-19 |
abstractText | Sialic acid-binding immunoglobulin-like lectin (Siglec)-8 is a human cell surface protein expressed exclusively on eosinophils, mast cells, and basophils that, when engaged, induces eosinophil apoptosis and inhibits mast cell mediator release. This makes Siglec-8 a promising therapeutic target to treat diseases involving these cell types. However, preclinical studies of Siglec-8 targeting in vivo are lacking because this protein is only found in humans, apes, and some monkeys. Therefore, we have developed a mouse strain in which SIGLEC8 transcription is activated by Cre recombinase and have crossed this mouse with the eoCre mouse to achieve eosinophil-specific expression. We confirmed that Siglec-8 is expressed exclusively on the surface of mature eosinophils in multiple tissues at levels comparable to those on human blood eosinophils. Following ovalbumin sensitization and airway challenge, Siglec-8 knock-in mice generated a pattern of allergic lung inflammation indistinguishable from that of littermate controls, suggesting that Siglec-8 expression within the eosinophil compartment does not alter allergic eosinophilic inflammation. Using bone marrow from these mice, we demonstrated that, during maturation, Siglec-8 expression occurs well before the late eosinophil developmental marker C-C motif chemokine receptor 3, consistent with eoCre expression. Antibody ligation of the receptor induces Siglec-8 endocytosis and alters the phosphotyrosine profile of these cells, indicative of productive signaling. Finally, we demonstrated that mouse eosinophils expressing Siglec-8 undergo cell death when the receptor is engaged, further evidence that Siglec-8 is functional on these cells. These mice should prove useful to investigate Siglec-8 biology and targeting in vivo in a variety of eosinophilic disease models. |