First Author | Ye M | Year | 2014 |
Journal | Cell Death Dis | Volume | 5 |
Issue | 11 | Pages | e1541 |
PubMed ID | 25429618 | Mgi Jnum | J:341933 |
Mgi Id | MGI:6831580 | Doi | 10.1038/cddis.2014.494 |
Citation | Ye M, et al. (2014) TRPM2 channel deficiency prevents delayed cytosolic Zn2+ accumulation and CA1 pyramidal neuronal death after transient global ischemia. Cell Death Dis 5:e1541 |
abstractText | Transient ischemia is a leading cause of cognitive dysfunction. Postischemic ROS generation and an increase in the cytosolic Zn(2+) level ([Zn(2+)]c) are critical in delayed CA1 pyramidal neuronal death, but the underlying mechanisms are not fully understood. Here we investigated the role of ROS-sensitive TRPM2 (transient receptor potential melastatin-related 2) channel. Using in vivo and in vitro models of ischemia-reperfusion, we showed that genetic knockout of TRPM2 strongly prohibited the delayed increase in the [Zn(2+)]c, ROS generation, CA1 pyramidal neuronal death and postischemic memory impairment. Time-lapse imaging revealed that TRPM2 deficiency had no effect on the ischemia-induced increase in the [Zn(2+)]c but abolished the cytosolic Zn(2+) accumulation during reperfusion as well as ROS-elicited increases in the [Zn(2+)]c. These results provide the first evidence to show a critical role for TRPM2 channel activation during reperfusion in the delayed increase in the [Zn(2+)]c and CA1 pyramidal neuronal death and identify TRPM2 as a key molecule signaling ROS generation to postischemic brain injury. |