|  Help  |  About  |  Contact Us

Publication : Glucocorticoid Induces Hepatic Steatosis by Inhibiting Activating Transcription Factor 3 (ATF3)/S100A9 Protein Signaling in Granulocytic Myeloid-derived Suppressor Cells.

First Author  Liu YF Year  2016
Journal  J Biol Chem Volume  291
Issue  41 Pages  21771-21785
PubMed ID  27573240 Mgi Jnum  J:237287
Mgi Id  MGI:5811945 Doi  10.1074/jbc.M116.726364
Citation  Liu YF, et al. (2016) Glucocorticoid Induces Hepatic Steatosis by Inhibiting Activating Transcription Factor 3 (ATF3)/S100A9 Protein Signaling in Granulocytic Myeloid-derived Suppressor Cells. J Biol Chem 291(41):21771-21785
abstractText  Glucocorticoids (GCs) used as inflammation suppressors have harmful side effects, including induction of hepatic steatosis. The underlying mechanisms of GC-promoted dysregulation of lipid metabolism, however, are not fully understood. GCs could facilitate the accumulation of myeloid-derived suppressor cells (MDSC) in the liver of animals, and the potential role of MDSCs in GC-induced hepatic steatosis was therefore investigated in this study. We demonstrated that granulocytic (G)-MDSC accumulation mediated the effects of GCs on the fatty liver, in which activating transcription factor 3 (ATF3)/S100A9 signaling plays an important role. ATF3-deficient mice developed hepatic steatosis and displayed expansion of G-MDSCs in the liver and multiple immune organs, which shared high similarity with the phenotype observed in GC-treated wild-type littermates. Adoptive transfer of GC-induced or ATF3-deficient G-MDSCs promoted lipid accumulation in the liver, whereas depletion of G-MDSCs alleviated these effects. Mechanistic studies showed that in MDSCs, ATF3 was transrepressed by the GC receptor GR through direct binding to the negative GR-response element. S100A9 is the major transcriptional target of ATF3 in G-MDSCs. Silencing S100A9 clearly alleviated G-MDSCs expansion and hepatic steatosis caused by ATF3 deficiency or GC treatment. Our study uncovers an important role of G-MDSCs in GC-induced hepatic steatosis, in which ATF3 may have potential therapeutic implications.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

5 Authors

4 Bio Entities

Trail: Publication

0 Expression