|  Help  |  About  |  Contact Us

Publication : PACSIN2-dependent apical endocytosis regulates the morphology of epithelial microvilli.

First Author  Postema MM Year  2019
Journal  Mol Biol Cell Volume  30
Issue  19 Pages  2515-2526
PubMed ID  31390291 Mgi Jnum  J:280755
Mgi Id  MGI:6369547 Doi  10.1091/mbc.E19-06-0352
Citation  Postema MM, et al. (2019) PACSIN2-dependent apical endocytosis regulates the morphology of epithelial microvilli. Mol Biol Cell 30(19):2515-2526
abstractText  Apical microvilli are critical for the homeostasis of transporting epithelia, yet mechanisms that control the assembly and morphology of these protrusions remain poorly understood. Previous studies in intestinal epithelial cell lines suggested a role for the F-BAR domain protein PACSIN2 in normal microvillar assembly. Here we report the phenotype of PACSIN2 KO mice and provide evidence that through its role in promoting apical endocytosis, this molecule plays a role in controlling microvillar morphology. PACSIN2 KO enterocytes exhibit reduced numbers of microvilli and defects in the microvillar ultrastructure, with membranes lifting away from rootlets of core bundles. Dynamin2, a PACSIN2 binding partner, and other endocytic factors were also lost from their normal localization near microvillar rootlets. To determine whether loss of endocytic machinery could explain defects in microvillar morphology, we examined the impact of PACSIN2 KD and endocytosis inhibition on live intestinal epithelial cells. These assays revealed that when endocytic vesicle scission fails, tubules are pulled into the cytoplasm and this, in turn, leads to a membrane-lifting phenomenon reminiscent of that observed at PACSIN2 KO brush borders. These findings lead to a new model where inward forces generated by endocytic machinery on the plasma membrane control the membrane wrapping of cell surface protrusions.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

3 Bio Entities

Trail: Publication

0 Expression