|  Help  |  About  |  Contact Us

Publication : Tumor necrosis factor alpha receptor 1 deficiency in hepatocytes does not protect from non-alcoholic steatohepatitis, but attenuates insulin resistance in mice.

First Author  Bluemel S Year  2020
Journal  World J Gastroenterol Volume  26
Issue  33 Pages  4933-4944
PubMed ID  32952340 Mgi Jnum  J:336997
Mgi Id  MGI:6780867 Doi  10.3748/wjg.v26.i33.4933
Citation  Bluemel S, et al. (2020) Tumor necrosis factor alpha receptor 1 deficiency in hepatocytes does not protect from non-alcoholic steatohepatitis, but attenuates insulin resistance in mice. World J Gastroenterol 26(33):4933-4944
abstractText  BACKGROUND: End-stage liver disease caused by non-alcoholic steatohepatitis (NASH) is the second leading indication for liver transplantation. To date, only moderately effective pharmacotherapies exist to treat NASH. Understanding the pathogenesis of NASH is therefore crucial for the development of new therapies. The inflammatory cytokine tumor necrosis factor alpha (TNF-alpha) is important for the progression of liver disease. TNF signaling via TNF receptor 1 (TNFR1) has been hypothesized to be important for the development of NASH and hepatocellular carcinoma in whole-body knockout animal models. AIM: To investigate the role of TNFR1 signaling in hepatocytes for steatohepatitis development in a mouse model of diet-induced NASH. METHODS: NASH was induced by a western-style fast-food diet in mice deficient for TNFR1 in hepatocytes (TNFR1(DeltaHEP)) and their wild-type littermates (TNFR1(fl/fl)). Glucose tolerance was assessed after 18 wk and insulin resistance after 19 wk of feeding. After 20 wk mice were assessed for features of NASH and the metabolic syndrome such as liver weight, liver steatosis, liver fibrosis and markers of liver inflammation. RESULTS: Obesity, liver injury, inflammation, steatosis and fibrosis was not different between TNFR1(DeltaHEP) and TNFR1(fl/fl) mice. However, Tnfr1 deficiency in hepatocytes protected against glucose intolerance and insulin resistance. CONCLUSION: Our results indicate that deficiency of TNFR1 signaling in hepatocytes does not protect from diet-induced NASH. However, improved insulin resistance in this model strengthens the role of the liver in glucose homeostasis.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

4 Bio Entities

Trail: Publication

0 Expression