| First Author | Dejager L | Year | 2010 |
| Journal | J Biol Chem | Volume | 285 |
| Issue | 40 | Pages | 31073-86 |
| PubMed ID | 20663891 | Mgi Jnum | J:166381 |
| Mgi Id | MGI:4844215 | Doi | 10.1074/jbc.M110.154484 |
| Citation | Dejager L, et al. (2010) Increased glucocorticoid receptor expression and activity mediate the LPS resistance of SPRET/EI mice. J Biol Chem 285(40):31073-86 |
| abstractText | SPRET/Ei mice are extremely resistant to acute LPS-induced lethal inflammation when compared with C57BL/6. We found that in vivo SPRET/Ei mice exhibit strongly reduced expression levels of cytokines and chemokines. To investigate the role of the potent anti-inflammatory glucocorticoid receptor (GR) in the SPRET/Ei phenotype, mice were treated with the GR antagonist RU486 or bilateral adrenalectomy. Under such conditions, both C57BL/6 and SPRET/Ei mice were strongly sensitized to LPS, and the differences in LPS response between SPRET/Ei and C57BL/6 mice were completely gone. These results underscore the central role of GR in the LPS hyporesponsiveness of SPRET/Ei mice. Compared with C57BL/6, SPRET/Ei mice were found to express higher GR levels, which were reflected in increased GR transactivation. Using a backcross mapping strategy, we demonstrate that the high GR transcription levels are linked to the Nr3c1 (GR) locus on chromosome 18 itself. Unexpectedly, SPRET/Ei mice exhibit a basal overactivation of the hypothalamic-pituitary-adrenal axis, namely strongly increased corticosterone levels, ACTH levels, and adrenocortical size. As a consequence of the excess of circulating glucocorticoids (GCs), levels of hepatic gluconeogenic enzymes are increased, and insulin secretion from pancreatic beta-cells is impaired, both of which result in hyperglycemia and glucose intolerance in SPRET/Ei mice. We conclude that SPRET/Ei mice are unique as they display an unusual combination of elevated GR expression and increased endogenous GC levels. Hence, these mice provide a new and powerful tool for the study of GR- and GC-mediated mechanisms, including immune repressive functions, neuroendocrine regulation, insulin secretion, and carbohydrate metabolism. |