|  Help  |  About  |  Contact Us

Publication : Reappraisal of putative glyoxalase 1-deficient mouse and dicarbonyl stress on embryonic stem cells in vitro.

First Author  Shafie A Year  2016
Journal  Biochem J Volume  473
Issue  22 Pages  4255-4270
PubMed ID  27671893 Mgi Jnum  J:248435
Mgi Id  MGI:5925121 Doi  10.1042/BCJ20160691
Citation  Shafie A, et al. (2016) Reappraisal of putative glyoxalase 1-deficient mouse and dicarbonyl stress on embryonic stem cells in vitro. Biochem J 473(22):4255-4270
abstractText  Glyoxalase 1 (Glo1) is a cytoplasmic enzyme with a cytoprotective function linked to metabolism of the cytotoxic side product of glycolysis, methylglyoxal (MG). It prevents dicarbonyl stress - the abnormal accumulation of reactive dicarbonyl metabolites, increasing protein and DNA damage. Increased Glo1 expression delays ageing and suppresses carcinogenesis, insulin resistance, cardiovascular disease and vascular complications of diabetes and renal failure. Surprisingly, gene trapping by the International Mouse Knockout Consortium (IMKC) to generate putative Glo1 knockout mice produced a mouse line with the phenotype characterised as normal and healthy. Here, we show that gene trapping mutation was successful, but the presence of Glo1 gene duplication, probably in the embryonic stem cells (ESCs) before gene trapping, maintained wild-type levels of Glo1 expression and activity and sustained the healthy phenotype. In further investigation of the consequences of dicarbonyl stress in ESCs, we found that prolonged exposure of mouse ESCs in culture to high concentrations of MG and/or hypoxia led to low-level increase in Glo1 copy number. In clinical translation, we found a high prevalence of low-level GLO1 copy number increase in renal failure where there is severe dicarbonyl stress. In conclusion, the IMKC Glo1 mutant mouse is not deficient in Glo1 expression through duplication of the Glo1 wild-type allele. Dicarbonyl stress and/or hypoxia induces low-level copy number alternation in ESCs. Similar processes may drive rare GLO1 duplication in health and disease.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

3 Bio Entities

Trail: Publication

0 Expression