|  Help  |  About  |  Contact Us

Publication : Lys184 deletion in troponin I impairs relaxation kinetics and induces hypercontractility in murine cardiac myofibrils.

First Author  Iorga B Year  2008
Journal  Cardiovasc Res Volume  77
Issue  4 Pages  676-86
PubMed ID  18096573 Mgi Jnum  J:161911
Mgi Id  MGI:4461878 Doi  10.1093/cvr/cvm113
Citation  Iorga B, et al. (2008) Lys184 deletion in troponin I impairs relaxation kinetics and induces hypercontractility in murine cardiac myofibrils. Cardiovasc Res 77(4):676-86
abstractText  AIMS: To understand the functional consequences of the Lys184 deletion in murine cardiac troponin I (mcTnI(DeltaK184)), we have studied the primary effects of this mutation linked to familial hypertrophic cardiomyopathy (FHC) at the sarcomeric level. METHODS AND RESULTS: Ca(2+) sensitivity and kinetics of force development and relaxation were investigated in cardiac myofibrils from transgenic mice expressing mcTnI(DeltaK184), as a model which co-segregates with FHC. Ca(2+)-dependent conformational changes (switch-on/off) of the fluorescence-labelled human troponin complex, containing either wild-type hcTnI or mutant hcTnI(DeltaK183), were investigated in myofibrils prepared from the guinea pig left ventricle. Ca(2+) sensitivity and maximum Ca(2+)-activated and passive forces were significantly enhanced and cooperativity was reduced in mutant myofibrils. At partial Ca(2+) activation, mutant but not wild-type myofibrils displayed spontaneous oscillatory contraction of sarcomeres. Both conformational switch-off rates of the incorporated troponin complex and the myofibrillar relaxation kinetics were slowed down by the mutation. Impaired relaxation kinetics and increased force at low [Ca(2+)] were reversed by 2,3-butanedione monoxime (BDM), which traps cross-bridges in non-force-generating states. CONCLUSION: We conclude that these changes are not due to alterations of the intrinsic cross-bridge kinetics. The molecular mechanism of sarcomeric diastolic dysfunction in this FHC model is based on the impaired regulatory switch-off kinetics of cTnI, which induces incomplete inhibition of force-generating cross-bridges at low [Ca(2+)] and thereby slows down relaxation of sarcomeres. Ca(2+) sensitization and impairment of the relaxation of sarcomeres induced by this mutation may underlie the enhanced systolic function and diastolic dysfunction at the sarcomeric level.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

4 Bio Entities

Trail: Publication

0 Expression