|  Help  |  About  |  Contact Us

Publication : Nuclear sequestration of delta-sarcoglycan disrupts the nuclear localization of lamin A/C and emerin in cardiomyocytes.

First Author  Heydemann A Year  2007
Journal  Hum Mol Genet Volume  16
Issue  4 Pages  355-63
PubMed ID  17164264 Mgi Jnum  J:117855
Mgi Id  MGI:3697807 Doi  10.1093/hmg/ddl453
Citation  Heydemann A, et al. (2007) Nuclear sequestration of {delta}-sarcoglycan disrupts the nuclear localization of lamin A/C and emerin in cardiomyocytes. Hum Mol Genet 16(4):355-63
abstractText  Sarcoglycan is a membrane-associated protein complex found at the plasma membrane of cardiomyocytes and skeletal myofibers. Recessive mutations of delta-sarcoglycan that eliminate expression, and therefore function, lead to cardiomyopathy and muscular dystrophy by producing instability of the plasma membrane. A dominant missense mutation in the gene encoding delta-sarcoglycan was previously shown to associate with dilated cardiomyopathy in humans. To investigate the mechanism of dominantly inherited cardiomyopathy, we generated transgenic mice that express the S151A delta-sarcoglycan mutation in the heart using the alpha-myosin heavy-chain gene promoter. Similar to the human delta-sarcoglycan gene mutation, S151A delta-sarcoglycan transgenic mice developed dilated cardiomyopathy at a young age with enhanced lethality. Instead of placement at the plasma membrane, delta-sarcoglycan was found in the nucleus of S151A delta-sarcoglycan cardiomyocytes. Retention of delta-sarcoglycan in the nucleus was accompanied by partial nuclear sequestration of beta- and gamma-sarcoglycan. Additionally, the nuclear-membrane-associated proteins, lamin A/C and emerin, were mislocalized throughout the nucleoplasm. Therefore, the S151A delta-sarcoglycan gene mutation acts in a dominant negative manner to produce trafficking defects that disrupt nuclear localization of lamin A/C and emerin, thus linking together two common mechanisms of inherited cardiomyopathy.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

11 Bio Entities

Trail: Publication

0 Expression