|  Help  |  About  |  Contact Us

Publication : Protein kinase N1 critically regulates cerebellar development and long-term function.

First Author  zur Nedden S Year  2018
Journal  J Clin Invest Volume  128
Issue  5 Pages  2076-2088
PubMed ID  29494346 Mgi Jnum  J:263615
Mgi Id  MGI:6158766 Doi  10.1172/JCI96165
Citation  zur Nedden S, et al. (2018) Protein kinase N1 critically regulates cerebellar development and long-term function. J Clin Invest 128(5):2076-2088
abstractText  Increasing evidence suggests that synapse dysfunctions are a major determinant of several neurodevelopmental and neurodegenerative diseases. Here we identify protein kinase N1 (PKN1) as a novel key player in fine-tuning the balance between axonal outgrowth and presynaptic differentiation in the parallel fiber-forming (PF-forming) cerebellar granule cells (Cgcs). Postnatal Pkn1-/- animals showed a defective PF-Purkinje cell (PF-PC) synapse formation. In vitro, Pkn1-/- Cgcs exhibited deregulated axonal outgrowth, elevated AKT phosphorylation, and higher levels of neuronal differentiation-2 (NeuroD2), a transcription factor preventing presynaptic maturation. Concomitantly, Pkn1-/- Cgcs had a reduced density of presynaptic sites. By inhibiting AKT with MK-2206 and siRNA-mediated knockdown, we found that AKT hyperactivation is responsible for the elongated axons, higher NeuroD2 levels, and reduced density of presynaptic specifications in Pkn1-/- Cgcs. In line with our in vitro data, Pkn1-/- mice showed AKT hyperactivation, elevated NeuroD2 levels, and reduced expression of PF-PC synaptic markers during stages of PF maturation in vivo. The long-term effect of Pkn1 knockout was further seen in cerebellar atrophy and mild ataxia. In summary, our results demonstrate that PKN1 functions as a developmentally active gatekeeper of AKT activity, thereby fine-tuning axonal outgrowth and presynaptic differentiation of Cgcs and subsequently the correct PF-PC synapse formation.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

3 Bio Entities

Trail: Publication

0 Expression