|  Help  |  About  |  Contact Us

Publication : Sodium-activated potassium channels shape peripheral auditory function and activity of the primary auditory neurons in mice.

First Author  Reijntjes DOJ Year  2019
Journal  Sci Rep Volume  9
Issue  1 Pages  2573
PubMed ID  30796290 Mgi Jnum  J:275433
Mgi Id  MGI:6304674 Doi  10.1038/s41598-019-39119-z
Citation  Reijntjes DOJ, et al. (2019) Sodium-activated potassium channels shape peripheral auditory function and activity of the primary auditory neurons in mice. Sci Rep 9(1):2573
abstractText  Potassium (K(+)) channels shape the response properties of neurons. Although enormous progress has been made to characterize K(+) channels in the primary auditory neurons, the molecular identities of many of these channels and their contributions to hearing in vivo remain unknown. Using a combination of RNA sequencing and single molecule fluorescent in situ hybridization, we localized expression of transcripts encoding the sodium-activated potassium channels KNa1.1 (SLO2.2/Slack) and KNa1.2 (SLO2.1/Slick) to the primary auditory neurons (spiral ganglion neurons, SGNs). To examine the contribution of these channels to function of the SGNs in vivo, we measured auditory brainstem responses in KNa1.1/1.2 double knockout (DKO) mice. Although auditory brainstem response (wave I) thresholds were not altered, the amplitudes of suprathreshold responses were reduced in DKO mice. This reduction in amplitude occurred despite normal numbers and molecular architecture of the SGNs and their synapses with the inner hair cells. Patch clamp electrophysiology of SGNs isolated from DKO mice displayed altered membrane properties, including reduced action potential thresholds and amplitudes. These findings show that KNa1 channel activity is essential for normal cochlear function and suggest that early forms of hearing loss may result from physiological changes in the activity of the primary auditory neurons.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

6 Bio Entities

Trail: Publication

0 Expression