|  Help  |  About  |  Contact Us

Publication : Myozap Deficiency Promotes Adverse Cardiac Remodeling via Differential Regulation of Mitogen-activated Protein Kinase/Serum-response Factor and β-Catenin/GSK-3β Protein Signaling.

First Author  Rangrez AY Year  2016
Journal  J Biol Chem Volume  291
Issue  8 Pages  4128-43
PubMed ID  26719331 Mgi Jnum  J:231032
Mgi Id  MGI:5766687 Doi  10.1074/jbc.M115.689620
Citation  Rangrez AY, et al. (2016) Myozap Deficiency Promotes Adverse Cardiac Remodeling via Differential Regulation of Mitogen-activated Protein Kinase/Serum-response Factor and beta-Catenin/GSK-3beta Protein Signaling. J Biol Chem 291(8):4128-43
abstractText  The intercalated disc (ID) is a "hot spot" for heart disease, as several ID proteins have been found mutated in cardiomyopathy. Myozap is a recent addition to the list of ID proteins and has been implicated in serum-response factor signaling. To elucidate the cardiac consequences of targeted deletion of myozap in vivo, we generated myozap-null mutant (Mzp(-/-)) mice. Although Mzp(-/-) mice did not exhibit a baseline phenotype, increased biomechanical stress due to pressure overload led to accelerated cardiac hypertrophy, accompanied by "super"-induction of fetal genes, including natriuretic peptides A and B (Nppa/Nppb). Moreover, Mzp(-/-) mice manifested a severe reduction of contractile function, signs of heart failure, and increased mortality. Expression of other ID proteins like N-cadherin, desmoplakin, connexin-43, and ZO-1 was significantly perturbed upon pressure overload, underscored by disorganization of the IDs in Mzp(-/-) mice. Exploration of the molecular causes of enhanced cardiac hypertrophy revealed significant activation of beta-catenin/GSK-3beta signaling, whereas MAPK and MKL1/serum-response factor pathways were inhibited. In summary, myozap is required for proper adaptation to increased biomechanical stress. In broader terms, our data imply an essential function of the ID in cardiac remodeling beyond a mere structural role and emphasize the need for a better understanding of this molecular structure in the context of heart disease.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

6 Bio Entities

Trail: Publication

0 Expression