|  Help  |  About  |  Contact Us

Publication : <i>Dec1</i> Deficiency Suppresses Cardiac Perivascular Fibrosis Induced by Transverse Aortic Constriction.

First Author  Le HT Year  2019
Journal  Int J Mol Sci Volume  20
Issue  19 PubMed ID  31597354
Mgi Jnum  J:293088 Mgi Id  MGI:6435869
Doi  10.3390/ijms20194967 Citation  Le HT, et al. (2019) Dec1 Deficiency Suppresses Cardiac Perivascular Fibrosis Induced by Transverse Aortic Constriction. Int J Mol Sci 20(19):4967
abstractText  Cardiac fibrosis is a major cause of cardiac dysfunction in hypertrophic hearts. Differentiated embryonic chondrocyte gene 1 (Dec1), a basic helix-loop-helix transcription factor, has circadian expression in the heart; however, its role in cardiac diseases remains unknown. Therefore, using Dec1 knock-out (Dec1KO) and wild-type (WT) mice, we evaluated cardiac function and morphology at one and four weeks after transverse aortic constriction (TAC) or sham surgery. We found that Dec1KO mice retained cardiac function until four weeks after TAC. Dec1KO mice also revealed more severely hypertrophic hearts than WT mice at four weeks after TAC, whereas no significant change was observed at one week. An increase in Dec1 expression was found in myocardial and stromal cells of TAC-treated WT mice. In addition, Dec1 circadian expression was disrupted in the heart of TAC-treated WT mice. Cardiac perivascular fibrosis was suppressed in TAC-treated Dec1KO mice, with positive immunostaining of S100 calcium binding protein A4 (S100A4), alpha smooth muscle actin (alphaSMA), transforming growth factor beta 1 (TGFbeta1), phosphorylation of Smad family member 3 (pSmad3), tumor necrosis factor alpha (TNFalpha), and cyclin-interacting protein 1 (p21). Furthermore, Dec1 expression was increased in myocardial hypertrophy and myocardial infarction of autopsy cases. Taken together, our results indicate that Dec1 deficiency suppresses cardiac fibrosis, preserving cardiac function in hypertrophic hearts. We suggest that Dec1 could be a new therapeutic target in cardiac fibrosis.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

3 Bio Entities

Trail: Publication

0 Expression