|  Help  |  About  |  Contact Us

Publication : Cyclin B3 implements timely vertebrate oocyte arrest for fertilization.

First Author  Bouftas N Year  2022
Journal  Dev Cell Volume  57
Issue  19 Pages  2305-2320.e6
PubMed ID  36182686 Mgi Jnum  J:329935
Mgi Id  MGI:7355944 Doi  10.1016/j.devcel.2022.09.005
Citation  Bouftas N, et al. (2022) Cyclin B3 implements timely vertebrate oocyte arrest for fertilization. Dev Cell 57(19):2305-2320.e6
abstractText  To ensure successful offspring ploidy, vertebrate oocytes must halt the cell cycle in meiosis II until sperm entry. Emi2 is essential to keep oocytes arrested until fertilization. However, how this arrest is implemented exclusively in meiosis II and not prematurely in meiosis I has until now remained enigmatic. Using mouse and frog oocytes, we show here that cyclin B3, an understudied B-type cyclin, is essential to keep Emi2 levels low in meiosis I. Direct phosphorylation of Emi2 at an evolutionarily highly conserved site by Cdk1/cyclin B3 targets Emi2 for degradation. In contrast, Cdk1/cyclin B1 is inefficient in Emi2 phosphorylation, and this provides a molecular explanation for the requirement of different B-type cyclins for oocyte maturation. Cyclin B3 degradation at exit from meiosis I enables Emi2 accumulation and thus timely arrest in meiosis II. Our findings illuminate the evolutionarily conserved mechanisms that control oocyte arrest for fertilization at the correct cell-cycle stage, which is essential for embryo viability.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

3 Bio Entities

Trail: Publication

0 Expression