|  Help  |  About  |  Contact Us

Publication : Brain-selective overexpression of angiotensin-converting enzyme 2 attenuates sympathetic nerve activity and enhances baroreflex function in chronic heart failure.

First Author  Xiao L Year  2011
Journal  Hypertension Volume  58
Issue  6 Pages  1057-65
PubMed ID  22025374 Mgi Jnum  J:280497
Mgi Id  MGI:6368913 Doi  10.1161/HYPERTENSIONAHA.111.176636
Citation  Xiao L, et al. (2011) Brain-selective overexpression of angiotensin-converting enzyme 2 attenuates sympathetic nerve activity and enhances baroreflex function in chronic heart failure. Hypertension 58(6):1057-65
abstractText  Angiotensin-converting enzyme 2 (ACE2) has been suggested to be involved in the central regulation of autonomic function. During chronic heart failure (CHF), elevated central angiotensin II signaling contributes to the sustained increase of sympathetic outflow. This is accompanied by a downregulation of ACE2 in the brain. We hypothesized that central overexpression of ACE2 decreases sympathetic outflow and enhances baroreflex function in CHF. Transgenic mice overexpressing human ACE2 selectively in the brain (SYN-hACE2 [SA]) and wild-type littermates (WT) were used. CHF was induced by permanent coronary artery ligation. Four weeks after coronary artery ligation, both WT and SA mice exhibited a significant decrease in left ventricular ejection fraction (<40%). A slight decrease in mean arterial pressure was found only in SA mice. Compared with WT mice with CHF, brain-selective ACE2 overexpression attenuated left ventricular end-diastolic pressure; decreased urinary norepinephrine excretion; baseline renal sympathetic nerve activity (WT CHF: 71.6+/-7.6% max versus SA CHF: 49.3+/-6.1% max); and enhanced baroreflex sensitivity (maximum slope: WT sham: 1.61+/-0.16%/mm Hg versus SA CHF: 1.51+/-0.17%/mm Hg). Chronic subcutaneous blockade of mas receptor increased renal sympathetic nerve activity in SA mice with CHF (A779: 67.3+/-5.8% versus vehicle: 46.4+/-3.6% of max). An upregulation in angiotensin II type 1 receptor expression was detected in medullary nuclei in WT CHF mice, which was significantly attenuated in SA mice with CHF. These data suggest that central ACE2 overexpression exerts a potential protective effect in CHF through attenuating sympathetic outflow. The mechanism for this effect involves angiotensin (1-7) mas signaling, as well as a decrease in angiotensin II type 1 receptor signaling in the medulla.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

3 Bio Entities

Trail: Publication

0 Expression