|  Help  |  About  |  Contact Us

Publication : The BDNF Valine 68 to Methionine Polymorphism Increases Compulsive Alcohol Drinking in Mice That Is Reversed by Tropomyosin Receptor Kinase B Activation.

First Author  Warnault V Year  2016
Journal  Biol Psychiatry Volume  79
Issue  6 Pages  463-73
PubMed ID  26204799 Mgi Jnum  J:284662
Mgi Id  MGI:6386007 Doi  10.1016/j.biopsych.2015.06.007
Citation  Warnault V, et al. (2016) The BDNF Valine 68 to Methionine Polymorphism Increases Compulsive Alcohol Drinking in Mice That Is Reversed by Tropomyosin Receptor Kinase B Activation. Biol Psychiatry 79(6):463-73
abstractText  BACKGROUND: The valine 66 to methionine (Met) polymorphism within the brain-derived neurotrophic factor (BDNF) sequence reduces activity-dependent BDNF release and is associated with psychiatric disorders in humans. Alcoholism is one of the most prevalent psychiatric diseases. Here, we tested the hypothesis that this polymorphism increases the severity of alcohol abuse disorders. METHODS: We generated transgenic mice carrying the mouse homolog of the human Met66BDNF allele (Met68BDNF) and used alcohol-drinking paradigms in combination with viral-mediated gene delivery and pharmacology. RESULTS: We found that Met68BDNF mice consumed excessive amounts of alcohol and continued to drink despite negative consequences, a hallmark of addiction. Importantly, compulsive alcohol intake was reversed by overexpression of the wild-type valine68BDNF allele in the ventromedial prefrontal cortex of the Met68BDNF mice or by systemic administration of the tropomyosin receptor kinase B agonist, LM22A-4. CONCLUSIONS: Our findings suggest that carrying this BDNF allele increases the risk of developing uncontrolled and excessive alcohol drinking that can be reversed by directly activating the BDNF receptor, tropomyosin receptor kinase B. Importantly, this work identifies a potential therapeutic strategy for the treatment of compulsive alcohol drinking in humans carrying the Met66BDNF allele.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

3 Bio Entities

Trail: Publication

0 Expression