First Author | Takikawa T | Year | 2020 |
Journal | PLoS One | Volume | 15 |
Issue | 12 | Pages | e0243483 |
PubMed ID | 33275602 | Mgi Jnum | J:299266 |
Mgi Id | MGI:6479521 | Doi | 10.1371/journal.pone.0243483 |
Citation | Takikawa T, et al. (2020) Adipolin/C1q/Tnf-related protein 12 prevents adverse cardiac remodeling after myocardial infarction. PLoS One 15(12):e0243483 |
abstractText | BACKGROUND: Myocardial infarction (MI) is a leading cause of death worldwide. We previously identified adipolin, also known as C1q/Tnf-related protein 12, as an anti-inflammatory adipokine with protective features against metabolic and vascular disorders. Here, we investigated the effect of adipolin on myocardial remodeling in a mouse model of MI. METHODS: Male adipolin-knockout (APL-KO) and wild-type (WT) mice were subjected to the permanent ligation of the left anterior descending coronary artery to create MI. RESULTS: APL-KO mice exhibited increased ratios of heart weight/body weight and lung weight/body weight after MI compared with WT mice. APL-KO mice showed increased left ventricular diastolic diameter and decreased fractional shortening after MI compared with WT mice. APL-KO mice exhibited increased expression of pro-inflammatory mediators and enhanced cardiomyocyte apoptosis in the post-MI hearts compared with WT mice. Systemic administration of adenoviral vectors expressing adipolin to WT mice after MI surgery improved left ventricular contractile dysfunction and reduced cardiac expression of pro-inflammatory genes. Treatment of cultured cardiomyocytes with adipolin protein reduced lipopolysaccharide-induced expression of pro-inflammatory mediators and hypoxia-induced apoptosis. Treatment with adipolin protein increased Akt phosphorylation in cardiomyocytes. Inhibition of PI3 kinase/Akt signaling reversed the anti-inflammatory and anti-apoptotic effects of adipolin in cardiomyocytes. CONCLUSION: Our data indicate that adipolin ameliorates pathological remodeling of myocardium after MI, at least in part, by its ability to reduce myocardial inflammatory response and apoptosis. |