|  Help  |  About  |  Contact Us

Publication : Macrophage-specific MyD88 deletion and pharmacological inhibition prevents liver damage in non-alcoholic fatty liver disease via reducing inflammatory response.

First Author  Yang B Year  2022
Journal  Biochim Biophys Acta Mol Basis Dis Volume  1868
Issue  10 Pages  166480
PubMed ID  35811033 Mgi Jnum  J:326818
Mgi Id  MGI:7316159 Doi  10.1016/j.bbadis.2022.166480
Citation  Yang B, et al. (2022) Macrophage-specific MyD88 deletion and pharmacological inhibition prevents liver damage in non-alcoholic fatty liver disease via reducing inflammatory response. Biochim Biophys Acta Mol Basis Dis 1868(10):166480
abstractText  Activation of the innate immune system through toll-like receptors (TLRs) has been repeatedly demonstrated in non-alcoholic fatty liver disease (NAFLD) and several TLRs have been shown to contribute. Myeloid differentiation primary response 88 (MyD88) is as an adapter protein for the activation of TLRs and bridges TLRs to NF-kappaB-mediated inflammation in macrophages. However, whether myeloid cell MyD88 contributes to NAFLD are largely unknown. To test this approach, we generated macrophage-specific MyD88 knockout mice and show that these mice are protected against high-fat diet (HFD)-induced hepatic injury, lipid accumulation, and fibrosis. These protective effects were associated with reduced macrophage numbers in liver tissues and surpassed inflammatory responses. In cultured macrophages, saturated fatty acid palmitate utilizes MyD88 to activate NF-kappaB and induce inflammatory and fibrogenic factors. In hepatocytes, these factors may cause lipid accumulation and a further elaboration of inflammatory cytokines. In hepatic stellate cells, macrophage-derived factors, especially TGF-beta, cause activation and hepatic fibrosis. We further show that pharmacological inhibition of MyD88 is also able to reduce NAFLD injury in HFD-fed mice. Therefore, our study has provided empirical evidence that macrophage MyD88 participates in HFD-induced NAFLD and could be targeted to prevent the development and progression of NAFLD/NASH.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

4 Bio Entities

Trail: Publication

0 Expression