First Author | Chen G | Year | 2015 |
Journal | Am J Physiol Endocrinol Metab | Volume | 308 |
Issue | 2 | Pages | E97-E110 |
PubMed ID | 25389366 | Mgi Jnum | J:218523 |
Mgi Id | MGI:5617877 | Doi | 10.1152/ajpendo.00366.2014 |
Citation | Chen G, et al. (2015) CYP2J2 overexpression attenuates nonalcoholic fatty liver disease induced by high-fat diet in mice. Am J Physiol Endocrinol Metab 308(2):E97-E110 |
abstractText | Cytochrome P-450 epoxygenase-derived epoxyeicosatrienoic acids (EETs) exert diverse biological activities, which include potent vasodilatory, anti-inflammatory, antiapoptotic, and antioxidatant effects, and cardiovascular protection. Liver has abundant epoxygenase expression and high levels of EET production; however, the roles of epoxygenases in liver diseases remain to be elucidated. In this study, we investigated the protection against high-fat diet-induced nonalcoholic fatty liver disease (NAFLD) in mice with endothelial-specific CYP2J2 overexpression (Tie2-CYP2J2-Tr). After 24 wk of high-fat diet, Tie2-CYP2J2-Tr mice displayed attenuated NAFLD compared with controls. Tie2-CYP2J2-Tr mice showed significantly decreased plasma triglyceride levels and liver lipid accumulation, improved liver function, reduced inflammatory responses, and less increase in hepatic oxidative stress than wild-type control mice. These effects were associated with inhibition of NF-kappaB/JNK signaling pathway activation and enhancement of the antioxidant defense system in Tie2-CYP2J2-Tr mice in vivo. We also demonstrated that 14,15-EET treatment protected HepG2 cells against palmitic acid-induced inflammation and oxidative stress. 14,15-EET attenuated palmitic acid-induced changes in NF-kappaB/JNK signaling pathways, malondialdehyde generation, glutathione levels, reactive oxygen species production, and NADPH oxidase and antioxidant enzyme expression in HepG2 cells in vitro. Together, these results highlight a new role for CYP epoxygenase-derived EETs in lipotoxicity-related inflammation and oxidative stress and reveal a new molecular mechanism underlying EETs-mediated anti-inflammatory and antioxidant effects that could aid in the design of new therapies for the prevention and treatment of NAFLD. |