|  Help  |  About  |  Contact Us

Publication : Characterization of a human core-specific lysosomal {alpha}1,6-mannosidase involved in N-glycan catabolism.

First Author  Park C Year  2005
Journal  J Biol Chem Volume  280
Issue  44 Pages  37204-16
PubMed ID  16115860 Mgi Jnum  J:102909
Mgi Id  MGI:3608222 Doi  10.1074/jbc.M508930200
Citation  Park C, et al. (2005) Characterization of a human core-specific lysosomal {alpha}1,6-mannosidase involved in N-glycan catabolism. J Biol Chem 280(44):37204-16
abstractText  In humans and rodents, the lysosomal catabolism of core Man(3)GlcNAc(2) N-glycan structures is catalyzed by the concerted action of several exoglycosidases, including a broad specificity lysosomal alpha-mannosidase (LysMan), core-specific alpha1,6-mannosidase, beta-mannosidase, and cleavage at the reducing terminus by a di-N-acetylchitobiase. We describe here the first cloning, expression, purification, and characterization of a novel human glycosylhydrolase family 38 alpha-mannosidase with catalytic characteristics similar to those established previously for the core-specific alpha1,6-mannosidase (acidic pH optimum, inhibition by swainsonine and 1,4-dideoxy-1,4-imino-d-mannitol, and stimulation by Co(2+) and Zn(2+)). Substrate specificity studies comparing the novel human alpha-mannosidase with human LysMan revealed that the former enzyme efficiently cleaved only the alpha1-6mannose residue from Man(3)GlcNAc but not Man(3)GlcNAc(2) or other larger high mannose oligosaccharides, indicating a requirement for chitobiase action before alpha1,6-mannosidase activity. In contrast, LysMan cleaved all of the alpha-linked mannose residues from high mannose oligosaccharides except the core alpha1-6mannose residue. alpha1,6-Mannosidase transcripts were ubiquitously expressed in human tissues, and expressed sequence tag searches identified homologous sequences in murine, porcine, and canine databases. No expressed sequence tags were identified for bovine alpha1,6-mannosidase, despite the identification of two sequence homologs in the bovine genome. The lack of conservation in 5'-flanking sequences for the bovine alpha1,6-mannosidase genes may lead to defective transcription similar to transcription defects in the bovine chitobiase gene. These results suggest that the chitobiase and alpha1,6-mannosidase function in tandem for mammalian lysosomal N-glycan catabolism.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

1 Bio Entities

Trail: Publication

0 Expression