|  Help  |  About  |  Contact Us

Publication : MiR-154-5p regulates osteogenic differentiation of adipose-derived mesenchymal stem cells under tensile stress through the Wnt/PCP pathway by targeting Wnt11.

First Author  Li J Year  2015
Journal  Bone Volume  78
Pages  130-41 PubMed ID  25959411
Mgi Jnum  J:228158 Mgi Id  MGI:5705446
Doi  10.1016/j.bone.2015.05.003 Citation  Li J, et al. (2015) MiR-154-5p regulates osteogenic differentiation of adipose-derived mesenchymal stem cells under tensile stress through the Wnt/PCP pathway by targeting Wnt11. Bone 78:130-41
abstractText  Mechanical stress is a well-acknowledged positive regulatory factor for osteogenic differentiation of adipose- derived mesenchymal stem cells (ADSCs). However, the molecular mechanisms associated with micro-RNAs (miRNAs) whereby ADSCs respond to mechanical stimuli remain elusive. We investigated the mechanism of mechanotransduction from the miRNA perspective in the osteogenic differentiation of ADSCs under tensile stress. Microarray analysis showed that miR-154-5p was remarkably downregulated when ADSCs were subjected to mechanical tension. Bioinformatics analysis with luciferase reporter assays demonstrated that Wnt11 3'UTR was a new direct target of miR-154-5p. Under tensile stress, lentivirus-mediated gain- or loss-of-function studies revealed that forced expression of miR-154-5p inhibited osteogenic differentiation of ADSCs, whereas inhibition of endogenous miR-154-5p with its antisense oligonucleotide (ASO-154-5p) obviously promoted osteogenic differentiation. Furthermore, miR-154-5p overexpression decreased activity of the non-canonical Wnt/PCP (RhoA-ROCK) pathway, as indicated by lower expression of Wnt11, active RhoA and ROCKII in miR-154-5p-treated ADSCs. By contrast, miR-154-5p inhibition activated the Wnt/PCP signals. Taken together, these results demonstrate that, under tensile stress, miR-154-5p negatively regulates ADSCs osteogenic differentiation through the Wnt/PCP pathway by directly targeting Wnt11. This novel regulatory pathway provides new insights into the molecular mechanism of mechanotransduction in osteogenic differentiation of ADSCs.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

32 Bio Entities

Trail: Publication

0 Expression