|  Help  |  About  |  Contact Us

Publication : Antisense RNA polymerase II divergent transcripts are P-TEFb dependent and substrates for the RNA exosome.

First Author  Flynn RA Year  2011
Journal  Proc Natl Acad Sci U S A Volume  108
Issue  26 Pages  10460-5
PubMed ID  21670248 Mgi Jnum  J:173556
Mgi Id  MGI:5014448 Doi  10.1073/pnas.1106630108
Citation  Flynn RA, et al. (2011) Antisense RNA polymerase II divergent transcripts are P-TEFb dependent and substrates for the RNA exosome. Proc Natl Acad Sci U S A 108(26):10460-5
abstractText  Divergent transcription occurs at the majority of RNA polymerase II (RNAPII) promoters in mouse embryonic stem cells (mESCs), and this activity correlates with CpG islands. Here we report the characterization of upstream antisense transcription in regions encoding transcription start site associated RNAs (TSSa-RNAs) at four divergent CpG island promoters: Isg20l1, Tcea1, Txn1, and Sf3b1. We find that upstream antisense RNAs (uaRNAs) have distinct capped 5' termini and heterogeneous nonpolyadenylated 3' ends. uaRNAs are short-lived with average half-lives of 18 minutes and are present at 1-4 copies per cell, approximately one RNA per DNA template. Exosome depletion stabilizes uaRNAs. These uaRNAs are probably initiation products because their capped termini correlate with peaks of paused RNAPII. The pausing factors NELF and DSIF are associated with these antisense polymerases and their sense partners. Knockdown of either NELF or DSIF results in an increase in the levels of uaRNAs. Consistent with P-TEFb controlling release from pausing, treatment with its inhibitor, flavopiridol, decreases uaRNA and nascent mRNA transcripts with similar kinetics. Finally, Isg20l1 induction reveals equivalent increases in transcriptional activity in sense and antisense directions. Together these data show divergent polymerases are regulated after P-TEFb recruitment with uaRNA levels controlled by the exosome.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

5 Bio Entities

Trail: Publication

0 Expression