First Author | Pelizzoli R | Year | 2008 |
Journal | Int J Dev Biol | Volume | 52 |
Issue | 1 | Pages | 55-62 |
PubMed ID | 18033672 | Mgi Jnum | J:127637 |
Mgi Id | MGI:3764559 | Doi | 10.1387/ijdb.062196rp |
Citation | Pelizzoli R, et al. (2008) TTF-1/NKX2.1 up-regulates the in vivo transcription of nestin. Int J Dev Biol 52(1):55-62 |
abstractText | TTF-1/NKX2.1, also known as T/EBP, is a homeodomain-containing gene involved in the organogenesis of the thyroid gland, lung and ventral forebrain. We have already reported that in 3T3 cells, TTF-1/NKX2.1 up-regulates the transcription of nestin, an intermediate filament protein expressed in multipotent neuroepithelial cells, by direct DNA-binding to a HRE/CRE-like site (NestBS) within a CNS-specific enhancer. Here, we demonstrate that TTF-1/NKX2.1 is co-expressed with nestin in the embryonal forebrain. We also performed a transgenic mouse embryo analysis in which NestBS was replaced by the canonical TTF-1/NKX2.1 consensus DNA-binding site (as identified in many thyroid- and lung-specific genes and very divergent from NestBS) or a random mutation. We observed beta-galactosidase expression in forebrain regions where TTF-1/NKX2.1 is expressed in wild-type embryos, and -to a minor extent- in rostralmost telencephalic regions and thalamus, whereas no beta-galactosidase expression was detected in forebrains of embryos bearing the random mutation. These data show that TTF-1/NKX2.1 regulates the transcription of the nestin gene in vivo through the NestBS site, suggesting that nestin might be at least one of the effectors of TTF-1/NKX2.1 during forebrain development. Finally, we have shown that the transactivating effect of TTF-1/NKX2.1 on the CNS-specific enhancer is unaffected by Retinoic Acid Receptor-alfa. |