|  Help  |  About  |  Contact Us

Publication : RNase L controls terminal adipocyte differentiation, lipids storage and insulin sensitivity via CHOP10 mRNA regulation.

First Author  Fabre O Year  2012
Journal  Cell Death Differ Volume  19
Issue  9 Pages  1470-81
PubMed ID  22441668 Mgi Jnum  J:204800
Mgi Id  MGI:5543366 Doi  10.1038/cdd.2012.23
Citation  Fabre O, et al. (2012) RNase L controls terminal adipocyte differentiation, lipids storage and insulin sensitivity via CHOP10 mRNA regulation. Cell Death Differ 19(9):1470-81
abstractText  Adipose tissue structure is altered during obesity, leading to deregulation of whole-body metabolism. Its function depends on its structure, in particular adipocytes number and differentiation stage. To better understand the mechanisms regulating adipogenesis, we have investigated the role of an endoribonuclease, endoribonuclease L (RNase L), using wild-type and RNase L-knockout mouse embryonic fibroblasts (RNase L(-/-)-MEFs). Here, we identify C/EBP homologous protein 10 (CHOP10), a dominant negative member of the CCAAT/enhancer-binding protein family, as a specific RNase L target. We show that RNase L is associated with CHOP10 mRNA and regulates its stability. CHOP10 expression is conserved in RNase L(-/-)-MEFs, maintaining preadipocyte state while impairing their terminal differentiation. RNase L(-/-)-MEFs have decreased lipids storage capacity, insulin sensitivity and glucose uptake. Expression of ectopic RNase L in RNase L(-/-)-MEFs triggers CHOP10 mRNA instability, allowing increased lipids storage, insulin response and glucose uptake. Similarly, downregulation of CHOP10 mRNA with CHOP10 siRNA in RNase L(-/-)-MEFs improves their differentiation in adipocyte. In vivo, aged RNase L(-)/(-) mice present an expanded adipose tissue, which, however, is unable to correctly store lipids, illustrated by ectopic lipids storage in the liver and in the kidney. These findings highlight RNase L as an essential regulator of adipogenesis via the regulation of CHOP10 mRNA.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

2 Bio Entities

Trail: Publication

0 Expression