First Author | Härndahl L | Year | 2004 |
Journal | J Biol Chem | Volume | 279 |
Issue | 15 | Pages | 15214-22 |
PubMed ID | 14736883 | Mgi Jnum | J:89497 |
Mgi Id | MGI:3040550 | Doi | 10.1074/jbc.M308952200 |
Citation | Harndahl L, et al. (2004) Beta-cell-targeted overexpression of phosphodiesterase 3B in mice causes impaired insulin secretion, glucose intolerance, and deranged islet morphology. J Biol Chem 279(15):15214-22 |
abstractText | The second messenger cAMP mediates potentiation of glucose-stimulated insulin release. Use of inhibitors of cAMP-hydrolyzing phosphodiesterase (PDE) 3 and overexpression of PDE3B in vitro have demonstrated a regulatory role for this enzyme in insulin secretion. In this work, the physiological significance of PDE3B-mediated degradation of cAMP for the regulation of insulin secretion in vivo and glucose homeostasis was investigated in transgenic mice overexpressing PDE3B in pancreatic beta-cells. A 2-fold overexpression of PDE3B protein and activity blunted the insulin response to intravenous glucose, resulting in reduced glucose disposal. The effects were 'dose'-dependent because mice overexpressing PDE3B 7-fold failed to increase insulin in response to glucose and hence exhibited pronounced glucose intolerance. Also, the insulin secretory response to intravenous glucagon-like peptide 1 was reduced in vivo. Similarly, islets stimulated in vitro exhibited reduced insulin secretory capacity in response to glucose and glucagon-like peptide 1. Perifusion experiments revealed that the reduction specifically affected the first phase of glucose-stimulated insulin secretion. Furthermore, morphological examinations demonstrated deranged islet cytoarchitecture. In conclusion, these results are consistent with an essential role for PDE3B in cAMP-mediated regulation of insulin release and glucose homeostasis. |