First Author | Oakes SA | Year | 2005 |
Journal | Proc Natl Acad Sci U S A | Volume | 102 |
Issue | 1 | Pages | 105-10 |
PubMed ID | 15613488 | Mgi Jnum | J:95748 |
Mgi Id | MGI:3527292 | Doi | 10.1073/pnas.0408352102 |
Citation | Oakes SA, et al. (2005) Proapoptotic BAX and BAK regulate the type 1 inositol trisphosphate receptor and calcium leak from the endoplasmic reticulum. Proc Natl Acad Sci U S A 102(1):105-10 |
abstractText | Proapoptotic BCL-2 family members BAX and BAK are required for the initiation of mitochondrial dysfunction during apoptosis and for maintaining the endoplasmic reticulum (ER) Ca(2+) stores necessary for Ca(2+)-dependent cell death. Conversely, antiapoptotic BCL-2 has been shown to decrease Ca(2+) concentration in the ER. We found that Bax(-/-)Bak(-/-) double-knockout (DKO) cells have reduced resting ER Ca(2+) levels because of increased Ca(2+) leak and an increase in the Ca(2+)-permeable, hyperphosphorylated state of the inositol trisphosphate receptor type 1 (IP3R-1). The ER Ca(2+) defect of DKO cells is rescued by RNA interference reduction of IP3R-1, supporting the argument that this channel regulates the increased Ca(2+) leak in these cells. BCL-2 and IP3R-1 physically interact at the ER, and their binding is increased in the absence of BAX and BAK. Moreover, knocking down BCL-2 decreases IP3R-1 phosphorylation and ER Ca(2+) leak rate in the DKO cells. These findings support a model in which BCL-2 family members regulate IP3R-1 phosphorylation to control the rate of ER Ca(2+) leak from intracellular stores. |