|  Help  |  About  |  Contact Us

Publication : Nesprin-2 is a multi-isomeric protein that binds lamin and emerin at the nuclear envelope and forms a subcellular network in skeletal muscle.

First Author  Zhang Q Year  2005
Journal  J Cell Sci Volume  118
Issue  Pt 4 Pages  673-87
PubMed ID  15671068 Mgi Jnum  J:96242
Mgi Id  MGI:3529743 Doi  10.1242/jcs.01642
Citation  Zhang Q, et al. (2005) Nesprin-2 is a multi-isomeric protein that binds lamin and emerin at the nuclear envelope and forms a subcellular network in skeletal muscle. J Cell Sci 118(Pt 4):673-87
abstractText  Nesprin-2 is a multi-isomeric, modular protein composed of variable numbers of spectrin-repeats linked to a C-terminal transmembrane domain and/or to N-terminal paired calponin homology (CH) domains. The smaller isoforms of nesprin-2 co-localize with and bind lamin A and emerin at the inner nuclear envelope (NE). In SW-13 cells, which lack lamin A/C, nesprin-2 epitopes and emerin were both mislocalized and formed aggregates in the endoplasmic reticulum (ER). The larger isoforms and other CH-domain-containing isoforms co-localize with heterochromatin within the nucleus and are also present at the outer NE and in multiple cytoplasmic compartments. Nesprin-2 isoforms relocalize during in vitro muscle differentiation of C2C12 myoblasts to the sarcomere of myotubes. Immunogold electron microscopy using antibodies specific for three different epitopes detected nesprin-2 isoforms at multiple locations including intranuclear foci, both membranes of the NE, mitochondria, sarcomeric structures and plasma membrane foci. In adult skeletal muscle, confocal immunolocalization studies demonstrated that nesprin-2 epitopes were present at the Z-line and were also associated with the sarcoplasmic reticulum (SR) in close apposition to SERCA2. These data suggest that nesprin-2 isoforms form a linking network between organelles and the actin cytoskeleton and thus may be important for maintaining sub-cellular spatial organisation. Moreover, its association at the NE with lamin and emerin, the genes mutated in Emery-Dreifuss muscular dystrophy, suggests a mechanism to explain how disruption of the NE leads to muscle dysfunction.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

1 Bio Entities

Trail: Publication

0 Expression