|  Help  |  About  |  Contact Us

Publication : Evidence that BCL-2 represses apoptosis by regulating endoplasmic reticulum-associated Ca2+ fluxes.

First Author  Lam M Year  1994
Journal  Proc Natl Acad Sci U S A Volume  91
Issue  14 Pages  6569-73
PubMed ID  8022822 Mgi Jnum  J:19381
Mgi Id  MGI:67546 Doi  10.1073/pnas.91.14.6569
Citation  Lam M, et al. (1994) Evidence that BCL-2 represses apoptosis by regulating endoplasmic reticulum-associated Ca2+ fluxes. Proc Natl Acad Sci U S A 91(14):6569-73
abstractText  BCL-2 is a 26-kDa integral membrane protein that represses apoptosis by an unknown mechanism. Recent findings indicate that Ca2+ release from the endoplasmic reticulum (ER) mediates apoptosis in mouse lymphoma cells. In view of growing evidence that BCL-2 localizes to the ER, as well as mitochondria and the perinuclear membrane, we investigated the possibility that BCL-2 represses apoptosis by regulating Ca2+ fluxes through the ER membrane. A cDNA encoding BCL-2 was introduced into WEHI7.2 cells and two subclones, W.Hb12 and W.Hb13, which express high and low levels of BCL-2 mRNA and protein, respectively, were isolated. WEHI7.2 cells underwent apoptosis in response to treatment with the glucocorticoid hormone dexamethasone, whereas W.Hb12 and W.Hb13 cells were protected from apoptosis, revealing a direct relationship between the level of BCL-2 expression and the degree of protection. Significantly, BCL-2 also blocked induction of apoptosis by thapsigargin (TG), a highly specific inhibitor of the ER-associated Ca2+ pump. TG completely inhibited ER Ca2+ pumping in both WEHI7.2 and W.Hb12 cells, but the release of Ca2+ into the cytosol after inhibition of ER Ca2+ pumping was significantly less in W.Hb12 cells than in WEHI7.2 cells, indicating that BCL-2 reduces Ca2+ efflux through the ER membrane. By reducing ER Ca2+ efflux, BCL-2 interfered with a signal for capacitative entry of extracellular Ca2+, preventing a sustained increase of cytosolic Ca2+ in TG-treated cells. These findings suggest that BCL-2 either directly or indirectly regulates the flux of Ca2+ across the ER membrane, thereby abrogating Ca2+ signaling of apoptosis.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

1 Bio Entities

Trail: Publication

0 Expression