First Author | Pimanda JE | Year | 2007 |
Journal | Proc Natl Acad Sci U S A | Volume | 104 |
Issue | 45 | Pages | 17692-7 |
PubMed ID | 17962413 | Mgi Jnum | J:127160 |
Mgi Id | MGI:3763040 | Doi | 10.1073/pnas.0707045104 |
Citation | Pimanda JE, et al. (2007) Gata2, Fli1, and Scl form a recursively wired gene-regulatory circuit during early hematopoietic development. Proc Natl Acad Sci U S A 104(45):17692-7 |
abstractText | Conservation of the vertebrate body plan has been attributed to the evolutionary stability of gene-regulatory networks (GRNs). We describe a regulatory circuit made up of Gata2, Fli1, and Scl/Tal1 and their enhancers, Gata2-3, Fli1+12, and Scl+19, that operates during specification of hematopoiesis in the mouse embryo. We show that the Fli1+12 enhancer, like the Gata2-3 and Scl+19 enhancers, targets hematopoietic stem cells (HSCs) and relies on a combination of Ets, Gata, and E-Box motifs. We show that the Gata2-3 enhancer also uses a similar cluster of motifs and that Gata2, Fli1, and Scl are expressed in embryonic day-11.5 dorsal aorta where HSCs originate and in fetal liver where they multiply. The three HSC enhancers in these tissues and in ES cell-derived hemangioblast equivalents are bound by each of these transcription factors (TFs) and form a fully connected triad that constitutes a previously undescribed example of both this network motif in mammalian development and a GRN kernel operating during the specification of a mammalian stem cell. |