First Author | Chen B | Year | 1997 |
Journal | J Biol Chem | Volume | 272 |
Issue | 4 | Pages | 2459-63 |
PubMed ID | 8999959 | Mgi Jnum | J:38665 |
Mgi Id | MGI:86048 | Doi | 10.1074/jbc.272.4.2459 |
Citation | Chen B, et al. (1997) Physical and functional interactions between the transcriptional inhibitors Id3 and ITF-2b. Evidence toward a novel mechanism regulating muscle-specific gene expression. J Biol Chem 272(4):2459-63 |
abstractText | We have used an interaction cloning strategy to identify an inhibitory isoform of the ITF-2 transcription factor, ITF-2b, that interacts with the transcriptional inhibitor Id3/HLH462. The interaction was confirmed in vitro, and inside intact myogenic C2C12 cells. As expected, overexpression of either Id3/HLH462 or ITF-2b effectively inhibited the activation of the muscle-specific creatine kinase promoter by the myogenic transcription factor MyoD. However, when overexpressed simultaneously, ITF-2b and Id3/HLH462 counteracted each other's inhibitory effect to produce a reduced overall inhibition. Moreover, while ITF-2b inhibited the creatine kinase promoter, it acted as a weak transactivator on an artificial promoter consisting of three tandem copies of the consensus myogenic factor DNA binding site. Further investigation indicated that the ITF-2b/MyoD heterodimer bound to its specific DNA binding site in vitro, and the DNA binding was effectively blocked by Id3/HLH462. Additional analysis revealed the presence of transcripts for both the activating (ITF-2a) and inhibitory (ITF-2b) isoforms in differentiating C2C12 cultures, suggesting that both isoforms might participate in regulating the differentiation process. Taken together, this study reveals a more complex pattern of regulatory interactions involving the helix-loop-helix proteins than was previously anticipated. |