First Author | Ricono JM | Year | 2009 |
Journal | Am J Physiol Renal Physiol | Volume | 296 |
Issue | 2 | Pages | F406-17 |
PubMed ID | 19019919 | Mgi Jnum | J:175150 |
Mgi Id | MGI:5284758 | Doi | 10.1152/ajprenal.90368.2008 |
Citation | Ricono JM, et al. (2009) PDGF receptor-{beta} modulates metanephric mesenchyme chemotaxis induced by PDGF AA. Am J Physiol Renal Physiol 296(2):F406-17 |
abstractText | PDGF B chain or PDGF receptor (PDGFR)-beta-deficient (-/-) mice lack mesangial cells. To study responses of alpha- and beta-receptor activation to PDGF ligands, metanephric mesenchymal cells (MMCs) were established from embryonic day E11.5 wild-type (+/+) and -/- mouse embryos. PDGF BB stimulated cell migration in +/+ cells, whereas PDGF AA did not. Conversely, PDGF AA was chemotactic for -/- MMCs. The mechanism by which PDGFR-beta inhibited AA-induced migration was investigated. PDGF BB, but not PDGF AA, increased intracellular Ca(2+) and the production of reactive oxygen species (ROS) in +/+ cells. Transfection of -/- MMCs with the wild-type beta-receptor restored cell migration and ROS generation in response to PDGF BB and inhibited AA-induced migration. Inhibition of Ca(2+) signaling facilitated PDGF AA-induced chemotaxis in the wild-type cells. The antioxidant N-acetyl-l-cysteine (NAC) or the NADPH oxidase inhibitor diphenyleneiodonium (DPI) abolished the BB-induced increase in intracellular Ca(2+) concentration, suggesting that ROS act as upstream mediators of Ca(2+) in suppressing PDGF AA-induced migration. These data indicate that ROS and Ca(2+) generated by active PDGFR-beta play an essential role in suppressing PDGF AA-induced migration in +/+ MMCs. During kidney development, PDGFR beta-mediated ROS generation and Ca(2+) influx suppress PDGF AA-induced chemotaxis in metanephric mesenchyme. |